Metamath Proof Explorer


Theorem oppfrcl3

Description: If an opposite functor of a class is a functor, then the second component of the original class must be a relation whose domain is a relation as well. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses oppfrcl.1 φ G R
oppfrcl.2 Rel R
oppfrcl.3 No typesetting found for |- G = ( oppFunc ` F ) with typecode |-
oppfrcl2.4 φ F = A B
Assertion oppfrcl3 φ Rel B Rel dom B

Proof

Step Hyp Ref Expression
1 oppfrcl.1 φ G R
2 oppfrcl.2 Rel R
3 oppfrcl.3 Could not format G = ( oppFunc ` F ) : No typesetting found for |- G = ( oppFunc ` F ) with typecode |-
4 oppfrcl2.4 φ F = A B
5 4 fveq2d Could not format ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. A , B >. ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. A , B >. ) ) with typecode |-
6 df-ov Could not format ( A oppFunc B ) = ( oppFunc ` <. A , B >. ) : No typesetting found for |- ( A oppFunc B ) = ( oppFunc ` <. A , B >. ) with typecode |-
7 5 3 6 3eqtr4g Could not format ( ph -> G = ( A oppFunc B ) ) : No typesetting found for |- ( ph -> G = ( A oppFunc B ) ) with typecode |-
8 1 2 3 4 oppfrcl2 φ A V B V
9 oppfvalg Could not format ( ( A e. _V /\ B e. _V ) -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) : No typesetting found for |- ( ( A e. _V /\ B e. _V ) -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) with typecode |-
10 8 9 syl Could not format ( ph -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) : No typesetting found for |- ( ph -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) with typecode |-
11 7 10 eqtrd φ G = if Rel B Rel dom B A tpos B
12 1 2 oppfrcllem φ G
13 11 12 eqnetrrd φ if Rel B Rel dom B A tpos B
14 iffalse ¬ Rel B Rel dom B if Rel B Rel dom B A tpos B =
15 14 necon1ai if Rel B Rel dom B A tpos B Rel B Rel dom B
16 13 15 syl φ Rel B Rel dom B