Metamath Proof Explorer


Theorem oppf1st2nd

Description: Rewrite the opposite functor into its components ( eqopi ). (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses oppfrcl.1 φ G R
oppfrcl.2 Rel R
oppfrcl.3 No typesetting found for |- G = ( oppFunc ` F ) with typecode |-
oppfrcl2.4 φ F = A B
Assertion oppf1st2nd φ G V × V 1 st G = A 2 nd G = tpos B

Proof

Step Hyp Ref Expression
1 oppfrcl.1 φ G R
2 oppfrcl.2 Rel R
3 oppfrcl.3 Could not format G = ( oppFunc ` F ) : No typesetting found for |- G = ( oppFunc ` F ) with typecode |-
4 oppfrcl2.4 φ F = A B
5 4 fveq2d Could not format ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. A , B >. ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. A , B >. ) ) with typecode |-
6 df-ov Could not format ( A oppFunc B ) = ( oppFunc ` <. A , B >. ) : No typesetting found for |- ( A oppFunc B ) = ( oppFunc ` <. A , B >. ) with typecode |-
7 5 3 6 3eqtr4g Could not format ( ph -> G = ( A oppFunc B ) ) : No typesetting found for |- ( ph -> G = ( A oppFunc B ) ) with typecode |-
8 1 2 3 4 oppfrcl2 φ A V B V
9 oppfvalg Could not format ( ( A e. _V /\ B e. _V ) -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) : No typesetting found for |- ( ( A e. _V /\ B e. _V ) -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) with typecode |-
10 8 9 syl Could not format ( ph -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) : No typesetting found for |- ( ph -> ( A oppFunc B ) = if ( ( Rel B /\ Rel dom B ) , <. A , tpos B >. , (/) ) ) with typecode |-
11 7 10 eqtrd φ G = if Rel B Rel dom B A tpos B
12 1 2 3 4 oppfrcl3 φ Rel B Rel dom B
13 12 iftrued φ if Rel B Rel dom B A tpos B = A tpos B
14 11 13 eqtrd φ G = A tpos B
15 8 simpld φ A V
16 tposexg B V tpos B V
17 8 16 simpl2im φ tpos B V
18 15 17 opelxpd φ A tpos B V × V
19 14 18 eqeltrd φ G V × V
20 14 fveq2d φ 1 st G = 1 st A tpos B
21 op1stg A V tpos B V 1 st A tpos B = A
22 15 17 21 syl2anc φ 1 st A tpos B = A
23 20 22 eqtrd φ 1 st G = A
24 14 fveq2d φ 2 nd G = 2 nd A tpos B
25 op2ndg A V tpos B V 2 nd A tpos B = tpos B
26 15 17 25 syl2anc φ 2 nd A tpos B = tpos B
27 24 26 eqtrd φ 2 nd G = tpos B
28 19 23 27 jca32 φ G V × V 1 st G = A 2 nd G = tpos B