Metamath Proof Explorer


Theorem oppf1st2nd

Description: Rewrite the opposite functor into its components ( eqopi ). (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses oppfrcl.1 ( 𝜑𝐺𝑅 )
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘ 𝐹 )
oppfrcl2.4 ( 𝜑𝐹 = ⟨ 𝐴 , 𝐵 ⟩ )
Assertion oppf1st2nd ( 𝜑 → ( 𝐺 ∈ ( V × V ) ∧ ( ( 1st𝐺 ) = 𝐴 ∧ ( 2nd𝐺 ) = tpos 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 oppfrcl.1 ( 𝜑𝐺𝑅 )
2 oppfrcl.2 Rel 𝑅
3 oppfrcl.3 𝐺 = ( oppFunc ‘ 𝐹 )
4 oppfrcl2.4 ( 𝜑𝐹 = ⟨ 𝐴 , 𝐵 ⟩ )
5 4 fveq2d ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
6 df-ov ( 𝐴 oppFunc 𝐵 ) = ( oppFunc ‘ ⟨ 𝐴 , 𝐵 ⟩ )
7 5 3 6 3eqtr4g ( 𝜑𝐺 = ( 𝐴 oppFunc 𝐵 ) )
8 1 2 3 4 oppfrcl2 ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
9 oppfvalg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 oppFunc 𝐵 ) = if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , ⟨ 𝐴 , tpos 𝐵 ⟩ , ∅ ) )
10 8 9 syl ( 𝜑 → ( 𝐴 oppFunc 𝐵 ) = if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , ⟨ 𝐴 , tpos 𝐵 ⟩ , ∅ ) )
11 7 10 eqtrd ( 𝜑𝐺 = if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , ⟨ 𝐴 , tpos 𝐵 ⟩ , ∅ ) )
12 1 2 3 4 oppfrcl3 ( 𝜑 → ( Rel 𝐵 ∧ Rel dom 𝐵 ) )
13 12 iftrued ( 𝜑 → if ( ( Rel 𝐵 ∧ Rel dom 𝐵 ) , ⟨ 𝐴 , tpos 𝐵 ⟩ , ∅ ) = ⟨ 𝐴 , tpos 𝐵 ⟩ )
14 11 13 eqtrd ( 𝜑𝐺 = ⟨ 𝐴 , tpos 𝐵 ⟩ )
15 8 simpld ( 𝜑𝐴 ∈ V )
16 tposexg ( 𝐵 ∈ V → tpos 𝐵 ∈ V )
17 8 16 simpl2im ( 𝜑 → tpos 𝐵 ∈ V )
18 15 17 opelxpd ( 𝜑 → ⟨ 𝐴 , tpos 𝐵 ⟩ ∈ ( V × V ) )
19 14 18 eqeltrd ( 𝜑𝐺 ∈ ( V × V ) )
20 14 fveq2d ( 𝜑 → ( 1st𝐺 ) = ( 1st ‘ ⟨ 𝐴 , tpos 𝐵 ⟩ ) )
21 op1stg ( ( 𝐴 ∈ V ∧ tpos 𝐵 ∈ V ) → ( 1st ‘ ⟨ 𝐴 , tpos 𝐵 ⟩ ) = 𝐴 )
22 15 17 21 syl2anc ( 𝜑 → ( 1st ‘ ⟨ 𝐴 , tpos 𝐵 ⟩ ) = 𝐴 )
23 20 22 eqtrd ( 𝜑 → ( 1st𝐺 ) = 𝐴 )
24 14 fveq2d ( 𝜑 → ( 2nd𝐺 ) = ( 2nd ‘ ⟨ 𝐴 , tpos 𝐵 ⟩ ) )
25 op2ndg ( ( 𝐴 ∈ V ∧ tpos 𝐵 ∈ V ) → ( 2nd ‘ ⟨ 𝐴 , tpos 𝐵 ⟩ ) = tpos 𝐵 )
26 15 17 25 syl2anc ( 𝜑 → ( 2nd ‘ ⟨ 𝐴 , tpos 𝐵 ⟩ ) = tpos 𝐵 )
27 24 26 eqtrd ( 𝜑 → ( 2nd𝐺 ) = tpos 𝐵 )
28 19 23 27 jca32 ( 𝜑 → ( 𝐺 ∈ ( V × V ) ∧ ( ( 1st𝐺 ) = 𝐴 ∧ ( 2nd𝐺 ) = tpos 𝐵 ) ) )