Metamath Proof Explorer


Theorem tposexg

Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion tposexg ( 𝐹𝑉 → tpos 𝐹 ∈ V )

Proof

Step Hyp Ref Expression
1 tposssxp tpos 𝐹 ⊆ ( ( dom 𝐹 ∪ { ∅ } ) × ran 𝐹 )
2 dmexg ( 𝐹𝑉 → dom 𝐹 ∈ V )
3 cnvexg ( dom 𝐹 ∈ V → dom 𝐹 ∈ V )
4 2 3 syl ( 𝐹𝑉 dom 𝐹 ∈ V )
5 p0ex { ∅ } ∈ V
6 unexg ( ( dom 𝐹 ∈ V ∧ { ∅ } ∈ V ) → ( dom 𝐹 ∪ { ∅ } ) ∈ V )
7 4 5 6 sylancl ( 𝐹𝑉 → ( dom 𝐹 ∪ { ∅ } ) ∈ V )
8 rnexg ( 𝐹𝑉 → ran 𝐹 ∈ V )
9 7 8 xpexd ( 𝐹𝑉 → ( ( dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ∈ V )
10 ssexg ( ( tpos 𝐹 ⊆ ( ( dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ∧ ( ( dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ∈ V ) → tpos 𝐹 ∈ V )
11 1 9 10 sylancr ( 𝐹𝑉 → tpos 𝐹 ∈ V )