Step |
Hyp |
Ref |
Expression |
1 |
|
tposssxp |
⊢ tpos 𝐹 ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) |
2 |
|
dmexg |
⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) |
3 |
|
cnvexg |
⊢ ( dom 𝐹 ∈ V → ◡ dom 𝐹 ∈ V ) |
4 |
2 3
|
syl |
⊢ ( 𝐹 ∈ 𝑉 → ◡ dom 𝐹 ∈ V ) |
5 |
|
p0ex |
⊢ { ∅ } ∈ V |
6 |
|
unexg |
⊢ ( ( ◡ dom 𝐹 ∈ V ∧ { ∅ } ∈ V ) → ( ◡ dom 𝐹 ∪ { ∅ } ) ∈ V ) |
7 |
4 5 6
|
sylancl |
⊢ ( 𝐹 ∈ 𝑉 → ( ◡ dom 𝐹 ∪ { ∅ } ) ∈ V ) |
8 |
|
rnexg |
⊢ ( 𝐹 ∈ 𝑉 → ran 𝐹 ∈ V ) |
9 |
7 8
|
xpexd |
⊢ ( 𝐹 ∈ 𝑉 → ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ∈ V ) |
10 |
|
ssexg |
⊢ ( ( tpos 𝐹 ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ∧ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ∈ V ) → tpos 𝐹 ∈ V ) |
11 |
1 9 10
|
sylancr |
⊢ ( 𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V ) |