Metamath Proof Explorer


Theorem 2oppffunc

Description: The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025) The functor in opposite categories does not have to be an opposite functor. (Revised by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o 𝑂 = ( oppCat ‘ 𝐶 )
funcoppc2.p 𝑃 = ( oppCat ‘ 𝐷 )
funcoppc2.c ( 𝜑𝐶𝑉 )
funcoppc2.d ( 𝜑𝐷𝑊 )
2oppffunc.f ( 𝜑𝐹 ∈ ( 𝑂 Func 𝑃 ) )
Assertion 2oppffunc ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝐶 Func 𝐷 ) )

Proof

Step Hyp Ref Expression
1 funcoppc2.o 𝑂 = ( oppCat ‘ 𝐶 )
2 funcoppc2.p 𝑃 = ( oppCat ‘ 𝐷 )
3 funcoppc2.c ( 𝜑𝐶𝑉 )
4 funcoppc2.d ( 𝜑𝐷𝑊 )
5 2oppffunc.f ( 𝜑𝐹 ∈ ( 𝑂 Func 𝑃 ) )
6 oppfval2 ( 𝐹 ∈ ( 𝑂 Func 𝑃 ) → ( oppFunc ‘ 𝐹 ) = ⟨ ( 1st𝐹 ) , tpos ( 2nd𝐹 ) ⟩ )
7 5 6 syl ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ⟨ ( 1st𝐹 ) , tpos ( 2nd𝐹 ) ⟩ )
8 5 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝑂 Func 𝑃 ) ( 2nd𝐹 ) )
9 1 2 3 4 8 funcoppc2 ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) tpos ( 2nd𝐹 ) )
10 df-br ( ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) tpos ( 2nd𝐹 ) ↔ ⟨ ( 1st𝐹 ) , tpos ( 2nd𝐹 ) ⟩ ∈ ( 𝐶 Func 𝐷 ) )
11 9 10 sylib ( 𝜑 → ⟨ ( 1st𝐹 ) , tpos ( 2nd𝐹 ) ⟩ ∈ ( 𝐶 Func 𝐷 ) )
12 7 11 eqeltrd ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝐶 Func 𝐷 ) )