Metamath Proof Explorer


Theorem 2oppffunc

Description: The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025) The functor in opposite categories does not have to be an opposite functor. (Revised by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o O = oppCat C
funcoppc2.p P = oppCat D
funcoppc2.c φ C V
funcoppc2.d φ D W
2oppffunc.f φ F O Func P
Assertion 2oppffunc Could not format assertion : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( C Func D ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 funcoppc2.o O = oppCat C
2 funcoppc2.p P = oppCat D
3 funcoppc2.c φ C V
4 funcoppc2.d φ D W
5 2oppffunc.f φ F O Func P
6 oppfval2 Could not format ( F e. ( O Func P ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) : No typesetting found for |- ( F e. ( O Func P ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) with typecode |-
7 5 6 syl Could not format ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) with typecode |-
8 5 func1st2nd φ 1 st F O Func P 2 nd F
9 1 2 3 4 8 funcoppc2 φ 1 st F C Func D tpos 2 nd F
10 df-br 1 st F C Func D tpos 2 nd F 1 st F tpos 2 nd F C Func D
11 9 10 sylib φ 1 st F tpos 2 nd F C Func D
12 7 11 eqeltrd Could not format ( ph -> ( oppFunc ` F ) e. ( C Func D ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( C Func D ) ) with typecode |-