Metamath Proof Explorer


Theorem 2oppffunc

Description: The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o O = oppCat C
funcoppc2.p P = oppCat D
funcoppc2.c φ C V
funcoppc2.d φ D W
2oppffunc.f No typesetting found for |- G = ( oppFunc ` F ) with typecode |-
2oppffunc.g φ G O Func P
Assertion 2oppffunc Could not format assertion : No typesetting found for |- ( ph -> ( oppFunc ` G ) e. ( C Func D ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 funcoppc2.o O = oppCat C
2 funcoppc2.p P = oppCat D
3 funcoppc2.c φ C V
4 funcoppc2.d φ D W
5 2oppffunc.f Could not format G = ( oppFunc ` F ) : No typesetting found for |- G = ( oppFunc ` F ) with typecode |-
6 2oppffunc.g φ G O Func P
7 relfunc Rel O Func P
8 6 7 5 2oppf Could not format ( ph -> ( oppFunc ` G ) = F ) : No typesetting found for |- ( ph -> ( oppFunc ` G ) = F ) with typecode |-
9 5 6 eqeltrrid Could not format ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) with typecode |-
10 1 2 3 4 9 funcoppc5 φ F C Func D
11 8 10 eqeltrd Could not format ( ph -> ( oppFunc ` G ) e. ( C Func D ) ) : No typesetting found for |- ( ph -> ( oppFunc ` G ) e. ( C Func D ) ) with typecode |-