| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcoppc2.o |
|- O = ( oppCat ` C ) |
| 2 |
|
funcoppc2.p |
|- P = ( oppCat ` D ) |
| 3 |
|
funcoppc2.c |
|- ( ph -> C e. V ) |
| 4 |
|
funcoppc2.d |
|- ( ph -> D e. W ) |
| 5 |
|
2oppffunc.f |
|- ( ph -> F e. ( O Func P ) ) |
| 6 |
|
oppfval2 |
|- ( F e. ( O Func P ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 7 |
5 6
|
syl |
|- ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 8 |
5
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( O Func P ) ( 2nd ` F ) ) |
| 9 |
1 2 3 4 8
|
funcoppc2 |
|- ( ph -> ( 1st ` F ) ( C Func D ) tpos ( 2nd ` F ) ) |
| 10 |
|
df-br |
|- ( ( 1st ` F ) ( C Func D ) tpos ( 2nd ` F ) <-> <. ( 1st ` F ) , tpos ( 2nd ` F ) >. e. ( C Func D ) ) |
| 11 |
9 10
|
sylib |
|- ( ph -> <. ( 1st ` F ) , tpos ( 2nd ` F ) >. e. ( C Func D ) ) |
| 12 |
7 11
|
eqeltrd |
|- ( ph -> ( oppFunc ` F ) e. ( C Func D ) ) |