Metamath Proof Explorer


Theorem 2oppffunc

Description: The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o
|- O = ( oppCat ` C )
funcoppc2.p
|- P = ( oppCat ` D )
funcoppc2.c
|- ( ph -> C e. V )
funcoppc2.d
|- ( ph -> D e. W )
2oppffunc.f
|- G = ( oppFunc ` F )
2oppffunc.g
|- ( ph -> G e. ( O Func P ) )
Assertion 2oppffunc
|- ( ph -> ( oppFunc ` G ) e. ( C Func D ) )

Proof

Step Hyp Ref Expression
1 funcoppc2.o
 |-  O = ( oppCat ` C )
2 funcoppc2.p
 |-  P = ( oppCat ` D )
3 funcoppc2.c
 |-  ( ph -> C e. V )
4 funcoppc2.d
 |-  ( ph -> D e. W )
5 2oppffunc.f
 |-  G = ( oppFunc ` F )
6 2oppffunc.g
 |-  ( ph -> G e. ( O Func P ) )
7 relfunc
 |-  Rel ( O Func P )
8 6 7 5 2oppf
 |-  ( ph -> ( oppFunc ` G ) = F )
9 5 6 eqeltrrid
 |-  ( ph -> ( oppFunc ` F ) e. ( O Func P ) )
10 1 2 3 4 9 funcoppc5
 |-  ( ph -> F e. ( C Func D ) )
11 8 10 eqeltrd
 |-  ( ph -> ( oppFunc ` G ) e. ( C Func D ) )