Description: The opposite functor of an opposite functor is a functor on the original categories. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| funcoppc2.p | |- P = ( oppCat ` D ) |
||
| funcoppc2.c | |- ( ph -> C e. V ) |
||
| funcoppc2.d | |- ( ph -> D e. W ) |
||
| 2oppffunc.f | |- G = ( oppFunc ` F ) |
||
| 2oppffunc.g | |- ( ph -> G e. ( O Func P ) ) |
||
| Assertion | 2oppffunc | |- ( ph -> ( oppFunc ` G ) e. ( C Func D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc2.o | |- O = ( oppCat ` C ) |
|
| 2 | funcoppc2.p | |- P = ( oppCat ` D ) |
|
| 3 | funcoppc2.c | |- ( ph -> C e. V ) |
|
| 4 | funcoppc2.d | |- ( ph -> D e. W ) |
|
| 5 | 2oppffunc.f | |- G = ( oppFunc ` F ) |
|
| 6 | 2oppffunc.g | |- ( ph -> G e. ( O Func P ) ) |
|
| 7 | relfunc | |- Rel ( O Func P ) |
|
| 8 | 6 7 5 | 2oppf | |- ( ph -> ( oppFunc ` G ) = F ) |
| 9 | 5 6 | eqeltrrid | |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) |
| 10 | 1 2 3 4 9 | funcoppc5 | |- ( ph -> F e. ( C Func D ) ) |
| 11 | 8 10 | eqeltrd | |- ( ph -> ( oppFunc ` G ) e. ( C Func D ) ) |