| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcoppc2.o |
|- O = ( oppCat ` C ) |
| 2 |
|
funcoppc2.p |
|- P = ( oppCat ` D ) |
| 3 |
|
funcoppc2.c |
|- ( ph -> C e. V ) |
| 4 |
|
funcoppc2.d |
|- ( ph -> D e. W ) |
| 5 |
|
funcoppc3.f |
|- ( ph -> F ( O Func P ) tpos G ) |
| 6 |
|
funcoppc3.g |
|- ( ph -> G Fn ( A X. B ) ) |
| 7 |
1 2 3 4 5
|
funcoppc2 |
|- ( ph -> F ( C Func D ) tpos tpos G ) |
| 8 |
|
fnrel |
|- ( G Fn ( A X. B ) -> Rel G ) |
| 9 |
6 8
|
syl |
|- ( ph -> Rel G ) |
| 10 |
|
relxp |
|- Rel ( A X. B ) |
| 11 |
6
|
fndmd |
|- ( ph -> dom G = ( A X. B ) ) |
| 12 |
11
|
releqd |
|- ( ph -> ( Rel dom G <-> Rel ( A X. B ) ) ) |
| 13 |
10 12
|
mpbiri |
|- ( ph -> Rel dom G ) |
| 14 |
|
tpostpos2 |
|- ( ( Rel G /\ Rel dom G ) -> tpos tpos G = G ) |
| 15 |
9 13 14
|
syl2anc |
|- ( ph -> tpos tpos G = G ) |
| 16 |
7 15
|
breqtrd |
|- ( ph -> F ( C Func D ) G ) |