Metamath Proof Explorer


Theorem funcoppc3

Description: A functor on opposite categories yields a functor on the original categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses funcoppc2.o 𝑂 = ( oppCat ‘ 𝐶 )
funcoppc2.p 𝑃 = ( oppCat ‘ 𝐷 )
funcoppc2.c ( 𝜑𝐶𝑉 )
funcoppc2.d ( 𝜑𝐷𝑊 )
funcoppc3.f ( 𝜑𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 )
funcoppc3.g ( 𝜑𝐺 Fn ( 𝐴 × 𝐵 ) )
Assertion funcoppc3 ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )

Proof

Step Hyp Ref Expression
1 funcoppc2.o 𝑂 = ( oppCat ‘ 𝐶 )
2 funcoppc2.p 𝑃 = ( oppCat ‘ 𝐷 )
3 funcoppc2.c ( 𝜑𝐶𝑉 )
4 funcoppc2.d ( 𝜑𝐷𝑊 )
5 funcoppc3.f ( 𝜑𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 )
6 funcoppc3.g ( 𝜑𝐺 Fn ( 𝐴 × 𝐵 ) )
7 1 2 3 4 5 funcoppc2 ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) tpos tpos 𝐺 )
8 fnrel ( 𝐺 Fn ( 𝐴 × 𝐵 ) → Rel 𝐺 )
9 6 8 syl ( 𝜑 → Rel 𝐺 )
10 relxp Rel ( 𝐴 × 𝐵 )
11 6 fndmd ( 𝜑 → dom 𝐺 = ( 𝐴 × 𝐵 ) )
12 11 releqd ( 𝜑 → ( Rel dom 𝐺 ↔ Rel ( 𝐴 × 𝐵 ) ) )
13 10 12 mpbiri ( 𝜑 → Rel dom 𝐺 )
14 tpostpos2 ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) → tpos tpos 𝐺 = 𝐺 )
15 9 13 14 syl2anc ( 𝜑 → tpos tpos 𝐺 = 𝐺 )
16 7 15 breqtrd ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )