| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcoppc2.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
funcoppc2.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
funcoppc2.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 4 |
|
funcoppc2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 5 |
|
funcoppc3.f |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
| 6 |
|
funcoppc3.g |
⊢ ( 𝜑 → 𝐺 Fn ( 𝐴 × 𝐵 ) ) |
| 7 |
1 2 3 4 5
|
funcoppc2 |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) tpos tpos 𝐺 ) |
| 8 |
|
fnrel |
⊢ ( 𝐺 Fn ( 𝐴 × 𝐵 ) → Rel 𝐺 ) |
| 9 |
6 8
|
syl |
⊢ ( 𝜑 → Rel 𝐺 ) |
| 10 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐵 ) |
| 11 |
6
|
fndmd |
⊢ ( 𝜑 → dom 𝐺 = ( 𝐴 × 𝐵 ) ) |
| 12 |
11
|
releqd |
⊢ ( 𝜑 → ( Rel dom 𝐺 ↔ Rel ( 𝐴 × 𝐵 ) ) ) |
| 13 |
10 12
|
mpbiri |
⊢ ( 𝜑 → Rel dom 𝐺 ) |
| 14 |
|
tpostpos2 |
⊢ ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) → tpos tpos 𝐺 = 𝐺 ) |
| 15 |
9 13 14
|
syl2anc |
⊢ ( 𝜑 → tpos tpos 𝐺 = 𝐺 ) |
| 16 |
7 15
|
breqtrd |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |