| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppff1.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppff1.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
oppffn |
⊢ oppFunc Fn ( V × V ) |
| 4 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
| 5 |
|
df-rel |
⊢ ( Rel ( 𝐶 Func 𝐷 ) ↔ ( 𝐶 Func 𝐷 ) ⊆ ( V × V ) ) |
| 6 |
4 5
|
mpbi |
⊢ ( 𝐶 Func 𝐷 ) ⊆ ( V × V ) |
| 7 |
|
fnssres |
⊢ ( ( oppFunc Fn ( V × V ) ∧ ( 𝐶 Func 𝐷 ) ⊆ ( V × V ) ) → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) Fn ( 𝐶 Func 𝐷 ) ) |
| 8 |
3 6 7
|
mp2an |
⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) Fn ( 𝐶 Func 𝐷 ) |
| 9 |
|
fvres |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( oppFunc ‘ 𝑓 ) ) |
| 10 |
|
id |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 11 |
1 2 10
|
oppfoppc2 |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( oppFunc ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 12 |
9 11
|
eqeltrd |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 13 |
12
|
rgen |
⊢ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) |
| 14 |
|
ffnfv |
⊢ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ↔ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) Fn ( 𝐶 Func 𝐷 ) ∧ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) ) ) |
| 15 |
8 13 14
|
mpbir2an |
⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) |
| 16 |
|
simpl |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 17 |
16
|
fvresd |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( oppFunc ‘ 𝑓 ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) |
| 19 |
18
|
fvresd |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) = ( oppFunc ‘ 𝑔 ) ) |
| 20 |
17 19
|
eqeq12d |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) ↔ ( oppFunc ‘ 𝑓 ) = ( oppFunc ‘ 𝑔 ) ) ) |
| 21 |
|
fveq2 |
⊢ ( ( oppFunc ‘ 𝑓 ) = ( oppFunc ‘ 𝑔 ) → ( oppFunc ‘ ( oppFunc ‘ 𝑓 ) ) = ( oppFunc ‘ ( oppFunc ‘ 𝑔 ) ) ) |
| 22 |
1 2 16
|
oppfoppc2 |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( oppFunc ‘ 𝑓 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 23 |
|
relfunc |
⊢ Rel ( 𝑂 Func 𝑃 ) |
| 24 |
|
eqid |
⊢ ( oppFunc ‘ 𝑓 ) = ( oppFunc ‘ 𝑓 ) |
| 25 |
22 23 24
|
2oppf |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( oppFunc ‘ ( oppFunc ‘ 𝑓 ) ) = 𝑓 ) |
| 26 |
1 2 18
|
oppfoppc2 |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( oppFunc ‘ 𝑔 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 27 |
|
eqid |
⊢ ( oppFunc ‘ 𝑔 ) = ( oppFunc ‘ 𝑔 ) |
| 28 |
26 23 27
|
2oppf |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( oppFunc ‘ ( oppFunc ‘ 𝑔 ) ) = 𝑔 ) |
| 29 |
25 28
|
eqeq12d |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( oppFunc ‘ ( oppFunc ‘ 𝑓 ) ) = ( oppFunc ‘ ( oppFunc ‘ 𝑔 ) ) ↔ 𝑓 = 𝑔 ) ) |
| 30 |
21 29
|
imbitrid |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( oppFunc ‘ 𝑓 ) = ( oppFunc ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 31 |
20 30
|
sylbid |
⊢ ( ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ) → ( ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 32 |
31
|
rgen2 |
⊢ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ( ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) |
| 33 |
|
dff13 |
⊢ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) ↔ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ∧ ∀ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ∀ 𝑔 ∈ ( 𝐶 Func 𝐷 ) ( ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑓 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) ) |
| 34 |
15 32 33
|
mpbir2an |
⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) |