| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfoppc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppfoppc.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
oppfoppc2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 4 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
| 5 |
|
1st2nd |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 6 |
4 3 5
|
sylancr |
⊢ ( 𝜑 → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 8 |
|
df-ov |
⊢ ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) = ( oppFunc ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 9 |
7 8
|
eqtr4di |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) ) |
| 10 |
3
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 11 |
1 2 10
|
oppfoppc |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 12 |
9 11
|
eqeltrd |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) ) |