Metamath Proof Explorer


Theorem oppfoppc2

Description: The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses oppfoppc.o 𝑂 = ( oppCat ‘ 𝐶 )
oppfoppc.p 𝑃 = ( oppCat ‘ 𝐷 )
oppfoppc2.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
Assertion oppfoppc2 ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) )

Proof

Step Hyp Ref Expression
1 oppfoppc.o 𝑂 = ( oppCat ‘ 𝐶 )
2 oppfoppc.p 𝑃 = ( oppCat ‘ 𝐷 )
3 oppfoppc2.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
4 relfunc Rel ( 𝐶 Func 𝐷 )
5 1st2nd ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
6 4 3 5 sylancr ( 𝜑𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
7 6 fveq2d ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
8 df-ov ( ( 1st𝐹 ) oppFunc ( 2nd𝐹 ) ) = ( oppFunc ‘ ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
9 7 8 eqtr4di ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( ( 1st𝐹 ) oppFunc ( 2nd𝐹 ) ) )
10 3 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
11 1 2 10 oppfoppc ( 𝜑 → ( ( 1st𝐹 ) oppFunc ( 2nd𝐹 ) ) ∈ ( 𝑂 Func 𝑃 ) )
12 9 11 eqeltrd ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) )