| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfoppc.o |
|- O = ( oppCat ` C ) |
| 2 |
|
oppfoppc.p |
|- P = ( oppCat ` D ) |
| 3 |
|
oppfoppc2.f |
|- ( ph -> F e. ( C Func D ) ) |
| 4 |
|
relfunc |
|- Rel ( C Func D ) |
| 5 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 6 |
4 3 5
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 7 |
6
|
fveq2d |
|- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 8 |
|
df-ov |
|- ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) = ( oppFunc ` <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 9 |
7 8
|
eqtr4di |
|- ( ph -> ( oppFunc ` F ) = ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) ) |
| 10 |
3
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 11 |
1 2 10
|
oppfoppc |
|- ( ph -> ( ( 1st ` F ) oppFunc ( 2nd ` F ) ) e. ( O Func P ) ) |
| 12 |
9 11
|
eqeltrd |
|- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) |