Metamath Proof Explorer


Theorem oppfuprcl

Description: Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses uprcl2a.x No typesetting found for |- ( ph -> X ( G ( O UP P ) W ) M ) with typecode |-
oppfuprcl.g No typesetting found for |- G = ( oppFunc ` F ) with typecode |-
oppfuprcl.o O = oppCat D
oppfuprcl.p P = oppCat E
oppfuprcl.d φ D U
oppfuprcl.e φ E V
Assertion oppfuprcl φ F D Func E

Proof

Step Hyp Ref Expression
1 uprcl2a.x Could not format ( ph -> X ( G ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( G ( O UP P ) W ) M ) with typecode |-
2 oppfuprcl.g Could not format G = ( oppFunc ` F ) : No typesetting found for |- G = ( oppFunc ` F ) with typecode |-
3 oppfuprcl.o O = oppCat D
4 oppfuprcl.p P = oppCat E
5 oppfuprcl.d φ D U
6 oppfuprcl.e φ E V
7 1 uprcl2a φ G O Func P
8 2 7 eqeltrrid Could not format ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) with typecode |-
9 3 4 5 6 8 funcoppc5 φ F D Func E