| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcuprcl2.x |
⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) |
| 2 |
|
uptpos.h |
⊢ ( 𝜑 → tpos 𝐺 = 𝐻 ) |
| 3 |
2
|
tposeqd |
⊢ ( 𝜑 → tpos tpos 𝐺 = tpos 𝐻 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
| 5 |
1
|
uprcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) 𝐺 ) |
| 6 |
4 5
|
funcfn2 |
⊢ ( 𝜑 → 𝐺 Fn ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) ) |
| 7 |
|
fnrel |
⊢ ( 𝐺 Fn ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) → Rel 𝐺 ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → Rel 𝐺 ) |
| 9 |
|
relxp |
⊢ Rel ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) |
| 10 |
6
|
fndmd |
⊢ ( 𝜑 → dom 𝐺 = ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) ) |
| 11 |
10
|
releqd |
⊢ ( 𝜑 → ( Rel dom 𝐺 ↔ Rel ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) ) ) |
| 12 |
9 11
|
mpbiri |
⊢ ( 𝜑 → Rel dom 𝐺 ) |
| 13 |
|
tpostpos2 |
⊢ ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) → tpos tpos 𝐺 = 𝐺 ) |
| 14 |
8 12 13
|
syl2anc |
⊢ ( 𝜑 → tpos tpos 𝐺 = 𝐺 ) |
| 15 |
3 14
|
eqtr3d |
⊢ ( 𝜑 → tpos 𝐻 = 𝐺 ) |