Metamath Proof Explorer


Theorem uptposlem

Description: Lemma for uptpos . (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
uptpos.h ( 𝜑 → tpos 𝐺 = 𝐻 )
Assertion uptposlem ( 𝜑 → tpos 𝐻 = 𝐺 )

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 )
2 uptpos.h ( 𝜑 → tpos 𝐺 = 𝐻 )
3 2 tposeqd ( 𝜑 → tpos tpos 𝐺 = tpos 𝐻 )
4 eqid ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 )
5 1 uprcl2 ( 𝜑𝐹 ( 𝑂 Func 𝑃 ) 𝐺 )
6 4 5 funcfn2 ( 𝜑𝐺 Fn ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) )
7 fnrel ( 𝐺 Fn ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) → Rel 𝐺 )
8 6 7 syl ( 𝜑 → Rel 𝐺 )
9 relxp Rel ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) )
10 6 fndmd ( 𝜑 → dom 𝐺 = ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) )
11 10 releqd ( 𝜑 → ( Rel dom 𝐺 ↔ Rel ( ( Base ‘ 𝑂 ) × ( Base ‘ 𝑂 ) ) ) )
12 9 11 mpbiri ( 𝜑 → Rel dom 𝐺 )
13 tpostpos2 ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) → tpos tpos 𝐺 = 𝐺 )
14 8 12 13 syl2anc ( 𝜑 → tpos tpos 𝐺 = 𝐺 )
15 3 14 eqtr3d ( 𝜑 → tpos 𝐻 = 𝐺 )