Step |
Hyp |
Ref |
Expression |
1 |
|
upeu3.i |
⊢ ( 𝜑 → 𝐼 = ( Iso ‘ 𝐷 ) ) |
2 |
|
upeu3.o |
⊢ ( 𝜑 → ⚬ = ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |
3 |
|
upeu3.x |
⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ) |
4 |
|
upeu4.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐼 𝑌 ) ) |
5 |
|
upeu4.n |
⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ⚬ 𝑀 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
9 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
10 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
11 |
3
|
uprcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
12 |
3 6
|
uprcl4 |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
13 |
11
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
14 |
|
isofn |
⊢ ( 𝐷 ∈ Cat → ( Iso ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( Iso ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) |
16 |
1
|
fneq1d |
⊢ ( 𝜑 → ( 𝐼 Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ↔ ( Iso ‘ 𝐷 ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) ) |
17 |
15 16
|
mpbird |
⊢ ( 𝜑 → 𝐼 Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) |
18 |
|
fnov |
⊢ ( 𝐼 Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ↔ 𝐼 = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) ) |
20 |
19
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) 𝑌 ) ) |
21 |
4 20
|
eleqtrd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) 𝑌 ) ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) |
23 |
22
|
elmpocl2 |
⊢ ( 𝐾 ∈ ( 𝑋 ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐼 𝑦 ) ) 𝑌 ) → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
24 |
21 23
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
25 |
3 7
|
uprcl3 |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐸 ) ) |
26 |
3 9
|
uprcl5 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
27 |
6 8 9 10 3
|
isup2 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑥 ) 𝑓 = ( ( ( 𝑋 𝐺 𝑥 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑥 ) ) 𝑀 ) ) |
28 |
|
eqid |
⊢ ( Iso ‘ 𝐷 ) = ( Iso ‘ 𝐷 ) |
29 |
1
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
30 |
4 29
|
eleqtrd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
31 |
2
|
oveqd |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ⚬ 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
32 |
5 31
|
eqtrd |
⊢ ( 𝜑 → 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐾 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
33 |
6 7 8 9 10 11 12 24 25 26 27 28 30 32
|
upeu2 |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑁 ) ) ) |
34 |
33
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑁 ) ) |
35 |
33
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |
36 |
6 7 8 9 10 25 11 24 35
|
isup |
⊢ ( 𝜑 → ( 𝑌 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑁 ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑁 ) ) ) |
37 |
34 36
|
mpbird |
⊢ ( 𝜑 → 𝑌 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑁 ) |