Metamath Proof Explorer


Theorem isup2

Description: The universal property of a universal pair. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses isup2.b 𝐵 = ( Base ‘ 𝐷 )
isup2.h 𝐻 = ( Hom ‘ 𝐷 )
isup2.j 𝐽 = ( Hom ‘ 𝐸 )
isup2.o 𝑂 = ( comp ‘ 𝐸 )
isup2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 )
Assertion isup2 ( 𝜑 → ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑀 ) )

Proof

Step Hyp Ref Expression
1 isup2.b 𝐵 = ( Base ‘ 𝐷 )
2 isup2.h 𝐻 = ( Hom ‘ 𝐷 )
3 isup2.j 𝐽 = ( Hom ‘ 𝐸 )
4 isup2.o 𝑂 = ( comp ‘ 𝐸 )
5 isup2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 )
6 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
7 5 6 uprcl3 ( 𝜑𝑊 ∈ ( Base ‘ 𝐸 ) )
8 5 uprcl2 ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
9 5 1 uprcl4 ( 𝜑𝑋𝐵 )
10 5 3 uprcl5 ( 𝜑𝑀 ∈ ( 𝑊 𝐽 ( 𝐹𝑋 ) ) )
11 1 6 2 3 4 7 8 9 10 isup ( 𝜑 → ( 𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑀 ) ) )
12 5 11 mpbid ( 𝜑 → ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑋 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑀 ) )