Step |
Hyp |
Ref |
Expression |
1 |
|
upeu3.i |
⊢ ( 𝜑 → 𝐼 = ( Iso ‘ 𝐷 ) ) |
2 |
|
upeu3.o |
⊢ ( 𝜑 → ⚬ = ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |
3 |
|
upeu3.x |
⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ) |
4 |
|
upeu3.y |
⊢ ( 𝜑 → 𝑌 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑁 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
7 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
9 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
10 |
3
|
uprcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
11 |
3 5
|
uprcl4 |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
12 |
4 5
|
uprcl4 |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
13 |
3 6
|
uprcl3 |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐸 ) ) |
14 |
3 8
|
uprcl5 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
15 |
5 7 8 9 3
|
isup2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) |
16 |
4 8
|
uprcl5 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |
17 |
5 7 8 9 4
|
isup2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑁 ) ) |
18 |
5 6 7 8 9 10 11 12 13 14 15 16 17
|
upeu |
⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
19 |
1
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
20 |
2
|
oveqd |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ⚬ 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ⚬ 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
22 |
19 21
|
reueqbidv |
⊢ ( 𝜑 → ( ∃! 𝑟 ∈ ( 𝑋 𝐼 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ⚬ 𝑀 ) ↔ ∃! 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
23 |
18 22
|
mpbird |
⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 𝐼 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ⚬ 𝑀 ) ) |