| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isup2.b | 
							 |-  B = ( Base ` D )  | 
						
						
							| 2 | 
							
								
							 | 
							isup2.h | 
							 |-  H = ( Hom ` D )  | 
						
						
							| 3 | 
							
								
							 | 
							isup2.j | 
							 |-  J = ( Hom ` E )  | 
						
						
							| 4 | 
							
								
							 | 
							isup2.o | 
							 |-  O = ( comp ` E )  | 
						
						
							| 5 | 
							
								
							 | 
							isup2.x | 
							 |-  ( ph -> X ( <. F , G >. ( D UP E ) W ) M )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` E ) = ( Base ` E )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							uprcl3 | 
							 |-  ( ph -> W e. ( Base ` E ) )  | 
						
						
							| 8 | 
							
								5
							 | 
							uprcl2 | 
							 |-  ( ph -> F ( D Func E ) G )  | 
						
						
							| 9 | 
							
								5 1
							 | 
							uprcl4 | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 10 | 
							
								5 3
							 | 
							uprcl5 | 
							 |-  ( ph -> M e. ( W J ( F ` X ) ) )  | 
						
						
							| 11 | 
							
								1 6 2 3 4 7 8 9 10
							 | 
							isup | 
							 |-  ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							mpbid | 
							 |-  ( ph -> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) )  |