Step |
Hyp |
Ref |
Expression |
1 |
|
isup2.b |
|- B = ( Base ` D ) |
2 |
|
isup2.h |
|- H = ( Hom ` D ) |
3 |
|
isup2.j |
|- J = ( Hom ` E ) |
4 |
|
isup2.o |
|- O = ( comp ` E ) |
5 |
|
isup2.x |
|- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
6 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
7 |
5 6
|
uprcl3 |
|- ( ph -> W e. ( Base ` E ) ) |
8 |
5
|
uprcl2 |
|- ( ph -> F ( D Func E ) G ) |
9 |
5 1
|
uprcl4 |
|- ( ph -> X e. B ) |
10 |
5 3
|
uprcl5 |
|- ( ph -> M e. ( W J ( F ` X ) ) ) |
11 |
1 6 2 3 4 7 8 9 10
|
isup |
|- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) |
12 |
5 11
|
mpbid |
|- ( ph -> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) |