Metamath Proof Explorer


Theorem isup2

Description: The universal property of a universal pair. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses isup2.b B = Base D
isup2.h H = Hom D
isup2.j J = Hom E
isup2.o O = comp E
isup2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
Assertion isup2 φ y B g W J F y ∃! k X H y g = X G y k W F X O F y M

Proof

Step Hyp Ref Expression
1 isup2.b B = Base D
2 isup2.h H = Hom D
3 isup2.j J = Hom E
4 isup2.o O = comp E
5 isup2.x Could not format ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
6 eqid Base E = Base E
7 5 6 uprcl3 φ W Base E
8 5 uprcl2 φ F D Func E G
9 5 1 uprcl4 φ X B
10 5 3 uprcl5 φ M W J F X
11 1 6 2 3 4 7 8 9 10 isup Could not format ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) with typecode |-
12 5 11 mpbid φ y B g W J F y ∃! k X H y g = X G y k W F X O F y M