Metamath Proof Explorer


Theorem upfval

Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses upfval.b B = Base D
upfval.c C = Base E
upfval.h H = Hom D
upfval.j J = Hom E
upfval.o O = comp E
Assertion upfval Could not format assertion : No typesetting found for |- ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) with typecode |-

Proof

Step Hyp Ref Expression
1 upfval.b B = Base D
2 upfval.c C = Base E
3 upfval.h H = Hom D
4 upfval.j J = Hom E
5 upfval.o O = comp E
6 fvexd d = D e = E Base d V
7 fveq2 d = D Base d = Base D
8 7 adantr d = D e = E Base d = Base D
9 8 1 eqtr4di d = D e = E Base d = B
10 fvexd d = D e = E b = B Base e V
11 simplr d = D e = E b = B e = E
12 11 fveq2d d = D e = E b = B Base e = Base E
13 12 2 eqtr4di d = D e = E b = B Base e = C
14 fvexd d = D e = E b = B c = C Hom d V
15 simplll d = D e = E b = B c = C d = D
16 15 fveq2d d = D e = E b = B c = C Hom d = Hom D
17 16 3 eqtr4di d = D e = E b = B c = C Hom d = H
18 fvexd d = D e = E b = B c = C h = H Hom e V
19 simp-4r d = D e = E b = B c = C h = H e = E
20 19 fveq2d d = D e = E b = B c = C h = H Hom e = Hom E
21 20 4 eqtr4di d = D e = E b = B c = C h = H Hom e = J
22 fvexd d = D e = E b = B c = C h = H j = J comp e V
23 simp-5r d = D e = E b = B c = C h = H j = J e = E
24 23 fveq2d d = D e = E b = B c = C h = H j = J comp e = comp E
25 24 5 eqtr4di d = D e = E b = B c = C h = H j = J comp e = O
26 simp-6l d = D e = E b = B c = C h = H j = J o = O d = D
27 simp-6r d = D e = E b = B c = C h = H j = J o = O e = E
28 26 27 oveq12d d = D e = E b = B c = C h = H j = J o = O d Func e = D Func E
29 simp-4r d = D e = E b = B c = C h = H j = J o = O c = C
30 simp-5r d = D e = E b = B c = C h = H j = J o = O b = B
31 30 eleq2d d = D e = E b = B c = C h = H j = J o = O x b x B
32 simplr d = D e = E b = B c = C h = H j = J o = O j = J
33 32 oveqd d = D e = E b = B c = C h = H j = J o = O w j 1 st f x = w J 1 st f x
34 33 eleq2d d = D e = E b = B c = C h = H j = J o = O m w j 1 st f x m w J 1 st f x
35 31 34 anbi12d d = D e = E b = B c = C h = H j = J o = O x b m w j 1 st f x x B m w J 1 st f x
36 32 oveqd d = D e = E b = B c = C h = H j = J o = O w j 1 st f y = w J 1 st f y
37 simplr d = D e = E b = B c = C h = H j = J h = H
38 37 oveqdr d = D e = E b = B c = C h = H j = J o = O x h y = x H y
39 simpr d = D e = E b = B c = C h = H j = J o = O o = O
40 39 oveqd d = D e = E b = B c = C h = H j = J o = O w 1 st f x o 1 st f y = w 1 st f x O 1 st f y
41 40 oveqd d = D e = E b = B c = C h = H j = J o = O x 2 nd f y k w 1 st f x o 1 st f y m = x 2 nd f y k w 1 st f x O 1 st f y m
42 41 eqeq2d d = D e = E b = B c = C h = H j = J o = O g = x 2 nd f y k w 1 st f x o 1 st f y m g = x 2 nd f y k w 1 st f x O 1 st f y m
43 38 42 reueqbidv d = D e = E b = B c = C h = H j = J o = O ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
44 36 43 raleqbidv d = D e = E b = B c = C h = H j = J o = O g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
45 30 44 raleqbidv d = D e = E b = B c = C h = H j = J o = O y b g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
46 35 45 anbi12d d = D e = E b = B c = C h = H j = J o = O x b m w j 1 st f x y b g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
47 46 opabbidv d = D e = E b = B c = C h = H j = J o = O x m | x b m w j 1 st f x y b g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m = x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
48 28 29 47 mpoeq123dv d = D e = E b = B c = C h = H j = J o = O f d Func e , w c x m | x b m w j 1 st f x y b g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m = f D Func E , w C x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
49 22 25 48 csbied2 d = D e = E b = B c = C h = H j = J comp e / o f d Func e , w c x m | x b m w j 1 st f x y b g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m = f D Func E , w C x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
50 18 21 49 csbied2 d = D e = E b = B c = C h = H Hom e / j comp e / o f d Func e , w c x m | x b m w j 1 st f x y b g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m = f D Func E , w C x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
51 14 17 50 csbied2 d = D e = E b = B c = C Hom d / h Hom e / j comp e / o f d Func e , w c x m | x b m w j 1 st f x y b g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m = f D Func E , w C x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
52 10 13 51 csbied2 d = D e = E b = B Base e / c Hom d / h Hom e / j comp e / o f d Func e , w c x m | x b m w j 1 st f x y b g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m = f D Func E , w C x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
53 6 9 52 csbied2 d = D e = E Base d / b Base e / c Hom d / h Hom e / j comp e / o f d Func e , w c x m | x b m w j 1 st f x y b g w j 1 st f y ∃! k x h y g = x 2 nd f y k w 1 st f x o 1 st f y m = f D Func E , w C x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m
54 df-up Could not format UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) : No typesetting found for |- UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) with typecode |-
55 ovex D Func E V
56 2 fvexi C V
57 55 56 mpoex f D Func E , w C x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m V
58 53 54 57 ovmpoa Could not format ( ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) : No typesetting found for |- ( ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) with typecode |-
59 54 reldmmpo Could not format Rel dom UP : No typesetting found for |- Rel dom UP with typecode |-
60 59 ovprc Could not format ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = (/) ) : No typesetting found for |- ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = (/) ) with typecode |-
61 df-func Func = t Cat , u Cat f g | [˙Base t / b]˙ f : b Base u g z b × b f 1 st z Hom u f 2 nd z Hom t z x b x g x Id t x = Id u f x y b z b m x Hom t y n y Hom t z x g z n x y comp t z m = y g z n f x f y comp u f z x g y m
62 61 reldmmpo Rel dom Func
63 62 ovprc ¬ D V E V D Func E =
64 63 orcd ¬ D V E V D Func E = C =
65 0mpo0 D Func E = C = f D Func E , w C x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m =
66 64 65 syl ¬ D V E V f D Func E , w C x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m =
67 60 66 eqtr4d Could not format ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) : No typesetting found for |- ( -. ( D e. _V /\ E e. _V ) -> ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) ) with typecode |-
68 58 67 pm2.61i Could not format ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) : No typesetting found for |- ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) with typecode |-