Metamath Proof Explorer


Theorem upfval2

Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses upfval.b B = Base D
upfval.c C = Base E
upfval.h H = Hom D
upfval.j J = Hom E
upfval.o O = comp E
upfval2.w φ W C
upfval2.f φ F D Func E
Assertion upfval2 Could not format assertion : No typesetting found for |- ( ph -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) with typecode |-

Proof

Step Hyp Ref Expression
1 upfval.b B = Base D
2 upfval.c C = Base E
3 upfval.h H = Hom D
4 upfval.j J = Hom E
5 upfval.o O = comp E
6 upfval2.w φ W C
7 upfval2.f φ F D Func E
8 anass x B m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m x B m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m
9 8 opabbii x m | x B m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m = x m | x B m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m
10 1 fvexi B V
11 10 a1i φ B V
12 simprl φ x B m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m m W J 1 st F x
13 ovexd φ x B W J 1 st F x V
14 12 13 abexd φ x B m | m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m V
15 11 14 opabex3d φ x m | x B m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m V
16 9 15 eqeltrid φ x m | x B m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m V
17 fveq2 f = F 1 st f = 1 st F
18 17 fveq1d f = F 1 st f x = 1 st F x
19 18 oveq2d f = F w J 1 st f x = w J 1 st F x
20 19 eleq2d f = F m w J 1 st f x m w J 1 st F x
21 20 anbi2d f = F x B m w J 1 st f x x B m w J 1 st F x
22 17 fveq1d f = F 1 st f y = 1 st F y
23 22 oveq2d f = F w J 1 st f y = w J 1 st F y
24 18 opeq2d f = F w 1 st f x = w 1 st F x
25 24 22 oveq12d f = F w 1 st f x O 1 st f y = w 1 st F x O 1 st F y
26 fveq2 f = F 2 nd f = 2 nd F
27 26 oveqd f = F x 2 nd f y = x 2 nd F y
28 27 fveq1d f = F x 2 nd f y k = x 2 nd F y k
29 eqidd f = F m = m
30 25 28 29 oveq123d f = F x 2 nd f y k w 1 st f x O 1 st f y m = x 2 nd F y k w 1 st F x O 1 st F y m
31 30 eqeq2d f = F g = x 2 nd f y k w 1 st f x O 1 st f y m g = x 2 nd F y k w 1 st F x O 1 st F y m
32 31 reubidv f = F ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m
33 23 32 raleqbidv f = F g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m g w J 1 st F y ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m
34 33 ralbidv f = F y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m y B g w J 1 st F y ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m
35 21 34 anbi12d f = F x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m x B m w J 1 st F x y B g w J 1 st F y ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m
36 35 opabbidv f = F x m | x B m w J 1 st f x y B g w J 1 st f y ∃! k x H y g = x 2 nd f y k w 1 st f x O 1 st f y m = x m | x B m w J 1 st F x y B g w J 1 st F y ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m
37 oveq1 w = W w J 1 st F x = W J 1 st F x
38 37 eleq2d w = W m w J 1 st F x m W J 1 st F x
39 38 anbi2d w = W x B m w J 1 st F x x B m W J 1 st F x
40 oveq1 w = W w J 1 st F y = W J 1 st F y
41 opeq1 w = W w 1 st F x = W 1 st F x
42 41 oveq1d w = W w 1 st F x O 1 st F y = W 1 st F x O 1 st F y
43 42 oveqd w = W x 2 nd F y k w 1 st F x O 1 st F y m = x 2 nd F y k W 1 st F x O 1 st F y m
44 43 eqeq2d w = W g = x 2 nd F y k w 1 st F x O 1 st F y m g = x 2 nd F y k W 1 st F x O 1 st F y m
45 44 reubidv w = W ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m
46 40 45 raleqbidv w = W g w J 1 st F y ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m
47 46 ralbidv w = W y B g w J 1 st F y ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m
48 39 47 anbi12d w = W x B m w J 1 st F x y B g w J 1 st F y ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m x B m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m
49 48 opabbidv w = W x m | x B m w J 1 st F x y B g w J 1 st F y ∃! k x H y g = x 2 nd F y k w 1 st F x O 1 st F y m = x m | x B m W J 1 st F x y B g W J 1 st F y ∃! k x H y g = x 2 nd F y k W 1 st F x O 1 st F y m
50 1 2 3 4 5 upfval Could not format ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) : No typesetting found for |- ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) with typecode |-
51 36 49 50 ovmpog Could not format ( ( F e. ( D Func E ) /\ W e. C /\ { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) : No typesetting found for |- ( ( F e. ( D Func E ) /\ W e. C /\ { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) with typecode |-
52 7 6 16 51 syl3anc Could not format ( ph -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) : No typesetting found for |- ( ph -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) with typecode |-