Metamath Proof Explorer


Theorem upfval2

Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses upfval.b 𝐵 = ( Base ‘ 𝐷 )
upfval.c 𝐶 = ( Base ‘ 𝐸 )
upfval.h 𝐻 = ( Hom ‘ 𝐷 )
upfval.j 𝐽 = ( Hom ‘ 𝐸 )
upfval.o 𝑂 = ( comp ‘ 𝐸 )
upfval2.w ( 𝜑𝑊𝐶 )
upfval2.f ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
Assertion upfval2 ( 𝜑 → ( 𝐹 ( 𝐷 UP 𝐸 ) 𝑊 ) = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } )

Proof

Step Hyp Ref Expression
1 upfval.b 𝐵 = ( Base ‘ 𝐷 )
2 upfval.c 𝐶 = ( Base ‘ 𝐸 )
3 upfval.h 𝐻 = ( Hom ‘ 𝐷 )
4 upfval.j 𝐽 = ( Hom ‘ 𝐸 )
5 upfval.o 𝑂 = ( comp ‘ 𝐸 )
6 upfval2.w ( 𝜑𝑊𝐶 )
7 upfval2.f ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
8 anass ( ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( 𝑥𝐵 ∧ ( 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) ) )
9 8 opabbii { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( 𝑥𝐵 ∧ ( 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) ) }
10 1 fvexi 𝐵 ∈ V
11 10 a1i ( 𝜑𝐵 ∈ V )
12 simprl ( ( ( 𝜑𝑥𝐵 ) ∧ ( 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) ) → 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
13 ovexd ( ( 𝜑𝑥𝐵 ) → ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∈ V )
14 12 13 abexd ( ( 𝜑𝑥𝐵 ) → { 𝑚 ∣ ( 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } ∈ V )
15 11 14 opabex3d ( 𝜑 → { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( 𝑥𝐵 ∧ ( 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) ) } ∈ V )
16 9 15 eqeltrid ( 𝜑 → { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } ∈ V )
17 fveq2 ( 𝑓 = 𝐹 → ( 1st𝑓 ) = ( 1st𝐹 ) )
18 17 fveq1d ( 𝑓 = 𝐹 → ( ( 1st𝑓 ) ‘ 𝑥 ) = ( ( 1st𝐹 ) ‘ 𝑥 ) )
19 18 oveq2d ( 𝑓 = 𝐹 → ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑥 ) ) = ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
20 19 eleq2d ( 𝑓 = 𝐹 → ( 𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑥 ) ) ↔ 𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
21 20 anbi2d ( 𝑓 = 𝐹 → ( ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) )
22 17 fveq1d ( 𝑓 = 𝐹 → ( ( 1st𝑓 ) ‘ 𝑦 ) = ( ( 1st𝐹 ) ‘ 𝑦 ) )
23 22 oveq2d ( 𝑓 = 𝐹 → ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑦 ) ) = ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
24 18 opeq2d ( 𝑓 = 𝐹 → ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ = ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ )
25 24 22 oveq12d ( 𝑓 = 𝐹 → ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝑓 ) ‘ 𝑦 ) ) = ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
26 fveq2 ( 𝑓 = 𝐹 → ( 2nd𝑓 ) = ( 2nd𝐹 ) )
27 26 oveqd ( 𝑓 = 𝐹 → ( 𝑥 ( 2nd𝑓 ) 𝑦 ) = ( 𝑥 ( 2nd𝐹 ) 𝑦 ) )
28 27 fveq1d ( 𝑓 = 𝐹 → ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) )
29 eqidd ( 𝑓 = 𝐹𝑚 = 𝑚 )
30 25 28 29 oveq123d ( 𝑓 = 𝐹 → ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) )
31 30 eqeq2d ( 𝑓 = 𝐹 → ( 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) )
32 31 reubidv ( 𝑓 = 𝐹 → ( ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) )
33 23 32 raleqbidv ( 𝑓 = 𝐹 → ( ∀ 𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) )
34 33 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) )
35 21 34 anbi12d ( 𝑓 = 𝐹 → ( ( ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) ) )
36 35 opabbidv ( 𝑓 = 𝐹 → { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } )
37 oveq1 ( 𝑤 = 𝑊 → ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) = ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
38 37 eleq2d ( 𝑤 = 𝑊 → ( 𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ↔ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
39 38 anbi2d ( 𝑤 = 𝑊 → ( ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ) )
40 oveq1 ( 𝑤 = 𝑊 → ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) = ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
41 opeq1 ( 𝑤 = 𝑊 → ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ = ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ )
42 41 oveq1d ( 𝑤 = 𝑊 → ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) = ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
43 42 oveqd ( 𝑤 = 𝑊 → ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) )
44 43 eqeq2d ( 𝑤 = 𝑊 → ( 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) )
45 44 reubidv ( 𝑤 = 𝑊 → ( ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) )
46 40 45 raleqbidv ( 𝑤 = 𝑊 → ( ∀ 𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) )
47 46 ralbidv ( 𝑤 = 𝑊 → ( ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) )
48 39 47 anbi12d ( 𝑤 = 𝑊 → ( ( ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) ) )
49 48 opabbidv ( 𝑤 = 𝑊 → { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } )
50 1 2 3 4 5 upfval ( 𝐷 UP 𝐸 ) = ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑤𝐶 ↦ { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑤 𝐽 ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } )
51 36 49 50 ovmpog ( ( 𝐹 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑊𝐶 ∧ { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } ∈ V ) → ( 𝐹 ( 𝐷 UP 𝐸 ) 𝑊 ) = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } )
52 7 6 16 51 syl3anc ( 𝜑 → ( 𝐹 ( 𝐷 UP 𝐸 ) 𝑊 ) = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st𝐹 ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st𝐹 ) ‘ 𝑦 ) ) 𝑚 ) ) } )