Metamath Proof Explorer


Theorem upfval3

Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses upfval.b 𝐵 = ( Base ‘ 𝐷 )
upfval.c 𝐶 = ( Base ‘ 𝐸 )
upfval.h 𝐻 = ( Hom ‘ 𝐷 )
upfval.j 𝐽 = ( Hom ‘ 𝐸 )
upfval.o 𝑂 = ( comp ‘ 𝐸 )
upfval2.w ( 𝜑𝑊𝐶 )
upfval3.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
Assertion upfval3 ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( 𝐹𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) ) } )

Proof

Step Hyp Ref Expression
1 upfval.b 𝐵 = ( Base ‘ 𝐷 )
2 upfval.c 𝐶 = ( Base ‘ 𝐸 )
3 upfval.h 𝐻 = ( Hom ‘ 𝐷 )
4 upfval.j 𝐽 = ( Hom ‘ 𝐸 )
5 upfval.o 𝑂 = ( comp ‘ 𝐸 )
6 upfval2.w ( 𝜑𝑊𝐶 )
7 upfval3.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
8 df-br ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
9 7 8 sylib ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
10 1 2 3 4 5 6 9 upfval2 ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) 𝑚 ) ) } )
11 relfunc Rel ( 𝐷 Func 𝐸 )
12 11 brrelex12i ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) )
13 op1stg ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) = 𝐹 )
14 12 13 syl ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) = 𝐹 )
15 14 fveq1d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
16 15 oveq2d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ) = ( 𝑊 𝐽 ( 𝐹𝑥 ) ) )
17 16 eleq2d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ) ↔ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹𝑥 ) ) ) )
18 17 anbi2d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ) ) ↔ ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( 𝐹𝑥 ) ) ) ) )
19 14 fveq1d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
20 19 oveq2d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) = ( 𝑊 𝐽 ( 𝐹𝑦 ) ) )
21 15 opeq2d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ = ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ )
22 21 19 oveq12d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) = ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) )
23 op2ndg ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) = 𝐺 )
24 12 23 syl ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) = 𝐺 )
25 24 oveqd ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) )
26 25 fveq1d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) = ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) )
27 eqidd ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺𝑚 = 𝑚 )
28 22 26 27 oveq123d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) )
29 28 eqeq2d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑔 = ( ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) ) )
30 29 reubidv ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) ) )
31 20 30 raleqbidv ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) ) )
32 31 ralbidv ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) ) )
33 18 32 anbi12d ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( 𝐹𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) ) ) )
34 33 opabbidv ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) 𝑚 ) ) } = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( 𝐹𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) ) } )
35 7 34 syl ( 𝜑 → { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ ⟨ 𝐹 , 𝐺 ⟩ ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑥 ) ⟩ 𝑂 ( ( 1st ‘ ⟨ 𝐹 , 𝐺 ⟩ ) ‘ 𝑦 ) ) 𝑚 ) ) } = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( 𝐹𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) ) } )
36 10 35 eqtrd ( 𝜑 → ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝐵𝑚 ∈ ( 𝑊 𝐽 ( 𝐹𝑥 ) ) ) ∧ ∀ 𝑦𝐵𝑔 ∈ ( 𝑊 𝐽 ( 𝐹𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑊 , ( 𝐹𝑥 ) ⟩ 𝑂 ( 𝐹𝑦 ) ) 𝑚 ) ) } )