Step |
Hyp |
Ref |
Expression |
1 |
|
upfval.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
upfval.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
upfval.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
upfval.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
upfval.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
6 |
|
upfval2.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) |
7 |
|
upfval3.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
8 |
|
df-br |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
10 |
1 2 3 4 5 6 9
|
upfval2 |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) |
11 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
12 |
11
|
brrelex12i |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
13 |
|
op1stg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
14 |
12 13
|
syl |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
15 |
14
|
fveq1d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) = ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ↔ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
19 |
14
|
fveq1d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) = ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
15
|
opeq2d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 = 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
22 |
21 19
|
oveq12d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) = ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
23 |
|
op2ndg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
24 |
12 23
|
syl |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
25 |
24
|
oveqd |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
26 |
25
|
fveq1d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) = ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ) |
27 |
|
eqidd |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → 𝑚 = 𝑚 ) |
28 |
22 26 27
|
oveq123d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
30 |
29
|
reubidv |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
31 |
20 30
|
raleqbidv |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
32 |
31
|
ralbidv |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
33 |
18 32
|
anbi12d |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) ) |
34 |
33
|
opabbidv |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) } ) |
35 |
7 34
|
syl |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) } ) |
36 |
10 35
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) } ) |