Step |
Hyp |
Ref |
Expression |
1 |
|
upfval.b |
|- B = ( Base ` D ) |
2 |
|
upfval.c |
|- C = ( Base ` E ) |
3 |
|
upfval.h |
|- H = ( Hom ` D ) |
4 |
|
upfval.j |
|- J = ( Hom ` E ) |
5 |
|
upfval.o |
|- O = ( comp ` E ) |
6 |
|
upfval2.w |
|- ( ph -> W e. C ) |
7 |
|
upfval3.f |
|- ( ph -> F ( D Func E ) G ) |
8 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
9 |
7 8
|
sylib |
|- ( ph -> <. F , G >. e. ( D Func E ) ) |
10 |
1 2 3 4 5 6 9
|
upfval2 |
|- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) } ) |
11 |
|
relfunc |
|- Rel ( D Func E ) |
12 |
11
|
brrelex12i |
|- ( F ( D Func E ) G -> ( F e. _V /\ G e. _V ) ) |
13 |
|
op1stg |
|- ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F ) |
14 |
12 13
|
syl |
|- ( F ( D Func E ) G -> ( 1st ` <. F , G >. ) = F ) |
15 |
14
|
fveq1d |
|- ( F ( D Func E ) G -> ( ( 1st ` <. F , G >. ) ` x ) = ( F ` x ) ) |
16 |
15
|
oveq2d |
|- ( F ( D Func E ) G -> ( W J ( ( 1st ` <. F , G >. ) ` x ) ) = ( W J ( F ` x ) ) ) |
17 |
16
|
eleq2d |
|- ( F ( D Func E ) G -> ( m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) <-> m e. ( W J ( F ` x ) ) ) ) |
18 |
17
|
anbi2d |
|- ( F ( D Func E ) G -> ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) <-> ( x e. B /\ m e. ( W J ( F ` x ) ) ) ) ) |
19 |
14
|
fveq1d |
|- ( F ( D Func E ) G -> ( ( 1st ` <. F , G >. ) ` y ) = ( F ` y ) ) |
20 |
19
|
oveq2d |
|- ( F ( D Func E ) G -> ( W J ( ( 1st ` <. F , G >. ) ` y ) ) = ( W J ( F ` y ) ) ) |
21 |
15
|
opeq2d |
|- ( F ( D Func E ) G -> <. W , ( ( 1st ` <. F , G >. ) ` x ) >. = <. W , ( F ` x ) >. ) |
22 |
21 19
|
oveq12d |
|- ( F ( D Func E ) G -> ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) = ( <. W , ( F ` x ) >. O ( F ` y ) ) ) |
23 |
|
op2ndg |
|- ( ( F e. _V /\ G e. _V ) -> ( 2nd ` <. F , G >. ) = G ) |
24 |
12 23
|
syl |
|- ( F ( D Func E ) G -> ( 2nd ` <. F , G >. ) = G ) |
25 |
24
|
oveqd |
|- ( F ( D Func E ) G -> ( x ( 2nd ` <. F , G >. ) y ) = ( x G y ) ) |
26 |
25
|
fveq1d |
|- ( F ( D Func E ) G -> ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) = ( ( x G y ) ` k ) ) |
27 |
|
eqidd |
|- ( F ( D Func E ) G -> m = m ) |
28 |
22 26 27
|
oveq123d |
|- ( F ( D Func E ) G -> ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) |
29 |
28
|
eqeq2d |
|- ( F ( D Func E ) G -> ( g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) <-> g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) |
30 |
29
|
reubidv |
|- ( F ( D Func E ) G -> ( E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) |
31 |
20 30
|
raleqbidv |
|- ( F ( D Func E ) G -> ( A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) <-> A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) |
32 |
31
|
ralbidv |
|- ( F ( D Func E ) G -> ( A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) |
33 |
18 32
|
anbi12d |
|- ( F ( D Func E ) G -> ( ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) ) |
34 |
33
|
opabbidv |
|- ( F ( D Func E ) G -> { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) |
35 |
7 34
|
syl |
|- ( ph -> { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) |
36 |
10 35
|
eqtrd |
|- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) |