Step |
Hyp |
Ref |
Expression |
1 |
|
upfval.b |
|- B = ( Base ` D ) |
2 |
|
upfval.c |
|- C = ( Base ` E ) |
3 |
|
upfval.h |
|- H = ( Hom ` D ) |
4 |
|
upfval.j |
|- J = ( Hom ` E ) |
5 |
|
upfval.o |
|- O = ( comp ` E ) |
6 |
|
upfval2.w |
|- ( ph -> W e. C ) |
7 |
|
upfval2.f |
|- ( ph -> F e. ( D Func E ) ) |
8 |
|
anass |
|- ( ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) <-> ( x e. B /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) ) |
9 |
8
|
opabbii |
|- { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } = { <. x , m >. | ( x e. B /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) } |
10 |
1
|
fvexi |
|- B e. _V |
11 |
10
|
a1i |
|- ( ph -> B e. _V ) |
12 |
|
simprl |
|- ( ( ( ph /\ x e. B ) /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) -> m e. ( W J ( ( 1st ` F ) ` x ) ) ) |
13 |
|
ovexd |
|- ( ( ph /\ x e. B ) -> ( W J ( ( 1st ` F ) ` x ) ) e. _V ) |
14 |
12 13
|
abexd |
|- ( ( ph /\ x e. B ) -> { m | ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) |
15 |
11 14
|
opabex3d |
|- ( ph -> { <. x , m >. | ( x e. B /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) } e. _V ) |
16 |
9 15
|
eqeltrid |
|- ( ph -> { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) |
17 |
|
fveq2 |
|- ( f = F -> ( 1st ` f ) = ( 1st ` F ) ) |
18 |
17
|
fveq1d |
|- ( f = F -> ( ( 1st ` f ) ` x ) = ( ( 1st ` F ) ` x ) ) |
19 |
18
|
oveq2d |
|- ( f = F -> ( w J ( ( 1st ` f ) ` x ) ) = ( w J ( ( 1st ` F ) ` x ) ) ) |
20 |
19
|
eleq2d |
|- ( f = F -> ( m e. ( w J ( ( 1st ` f ) ` x ) ) <-> m e. ( w J ( ( 1st ` F ) ` x ) ) ) ) |
21 |
20
|
anbi2d |
|- ( f = F -> ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) <-> ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) ) ) |
22 |
17
|
fveq1d |
|- ( f = F -> ( ( 1st ` f ) ` y ) = ( ( 1st ` F ) ` y ) ) |
23 |
22
|
oveq2d |
|- ( f = F -> ( w J ( ( 1st ` f ) ` y ) ) = ( w J ( ( 1st ` F ) ` y ) ) ) |
24 |
18
|
opeq2d |
|- ( f = F -> <. w , ( ( 1st ` f ) ` x ) >. = <. w , ( ( 1st ` F ) ` x ) >. ) |
25 |
24 22
|
oveq12d |
|- ( f = F -> ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) = ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) ) |
26 |
|
fveq2 |
|- ( f = F -> ( 2nd ` f ) = ( 2nd ` F ) ) |
27 |
26
|
oveqd |
|- ( f = F -> ( x ( 2nd ` f ) y ) = ( x ( 2nd ` F ) y ) ) |
28 |
27
|
fveq1d |
|- ( f = F -> ( ( x ( 2nd ` f ) y ) ` k ) = ( ( x ( 2nd ` F ) y ) ` k ) ) |
29 |
|
eqidd |
|- ( f = F -> m = m ) |
30 |
25 28 29
|
oveq123d |
|- ( f = F -> ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) |
31 |
30
|
eqeq2d |
|- ( f = F -> ( g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
32 |
31
|
reubidv |
|- ( f = F -> ( E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
33 |
23 32
|
raleqbidv |
|- ( f = F -> ( A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
34 |
33
|
ralbidv |
|- ( f = F -> ( A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
35 |
21 34
|
anbi12d |
|- ( f = F -> ( ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) ) |
36 |
35
|
opabbidv |
|- ( f = F -> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |
37 |
|
oveq1 |
|- ( w = W -> ( w J ( ( 1st ` F ) ` x ) ) = ( W J ( ( 1st ` F ) ` x ) ) ) |
38 |
37
|
eleq2d |
|- ( w = W -> ( m e. ( w J ( ( 1st ` F ) ` x ) ) <-> m e. ( W J ( ( 1st ` F ) ` x ) ) ) ) |
39 |
38
|
anbi2d |
|- ( w = W -> ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) <-> ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) ) ) |
40 |
|
oveq1 |
|- ( w = W -> ( w J ( ( 1st ` F ) ` y ) ) = ( W J ( ( 1st ` F ) ` y ) ) ) |
41 |
|
opeq1 |
|- ( w = W -> <. w , ( ( 1st ` F ) ` x ) >. = <. W , ( ( 1st ` F ) ` x ) >. ) |
42 |
41
|
oveq1d |
|- ( w = W -> ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) = ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) ) |
43 |
42
|
oveqd |
|- ( w = W -> ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) |
44 |
43
|
eqeq2d |
|- ( w = W -> ( g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
45 |
44
|
reubidv |
|- ( w = W -> ( E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
46 |
40 45
|
raleqbidv |
|- ( w = W -> ( A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
47 |
46
|
ralbidv |
|- ( w = W -> ( A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
48 |
39 47
|
anbi12d |
|- ( w = W -> ( ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) ) |
49 |
48
|
opabbidv |
|- ( w = W -> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |
50 |
1 2 3 4 5
|
upfval |
|- ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) |
51 |
36 49 50
|
ovmpog |
|- ( ( F e. ( D Func E ) /\ W e. C /\ { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |
52 |
7 6 16 51
|
syl3anc |
|- ( ph -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |