| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							upfval.b | 
							 |-  B = ( Base ` D )  | 
						
						
							| 2 | 
							
								
							 | 
							upfval.c | 
							 |-  C = ( Base ` E )  | 
						
						
							| 3 | 
							
								
							 | 
							upfval.h | 
							 |-  H = ( Hom ` D )  | 
						
						
							| 4 | 
							
								
							 | 
							upfval.j | 
							 |-  J = ( Hom ` E )  | 
						
						
							| 5 | 
							
								
							 | 
							upfval.o | 
							 |-  O = ( comp ` E )  | 
						
						
							| 6 | 
							
								
							 | 
							upfval2.w | 
							 |-  ( ph -> W e. C )  | 
						
						
							| 7 | 
							
								
							 | 
							upfval2.f | 
							 |-  ( ph -> F e. ( D Func E ) )  | 
						
						
							| 8 | 
							
								
							 | 
							anass | 
							 |-  ( ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) <-> ( x e. B /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							opabbii | 
							 |-  { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } = { <. x , m >. | ( x e. B /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) } | 
						
						
							| 10 | 
							
								1
							 | 
							fvexi | 
							 |-  B e. _V  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							 |-  ( ph -> B e. _V )  | 
						
						
							| 12 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ x e. B ) /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) -> m e. ( W J ( ( 1st ` F ) ` x ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ovexd | 
							 |-  ( ( ph /\ x e. B ) -> ( W J ( ( 1st ` F ) ` x ) ) e. _V )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							abexd | 
							 |-  ( ( ph /\ x e. B ) -> { m | ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) | 
						
						
							| 15 | 
							
								11 14
							 | 
							opabex3d | 
							 |-  ( ph -> { <. x , m >. | ( x e. B /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) } e. _V ) | 
						
						
							| 16 | 
							
								9 15
							 | 
							eqeltrid | 
							 |-  ( ph -> { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) | 
						
						
							| 17 | 
							
								
							 | 
							fveq2 | 
							 |-  ( f = F -> ( 1st ` f ) = ( 1st ` F ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							fveq1d | 
							 |-  ( f = F -> ( ( 1st ` f ) ` x ) = ( ( 1st ` F ) ` x ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq2d | 
							 |-  ( f = F -> ( w J ( ( 1st ` f ) ` x ) ) = ( w J ( ( 1st ` F ) ` x ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eleq2d | 
							 |-  ( f = F -> ( m e. ( w J ( ( 1st ` f ) ` x ) ) <-> m e. ( w J ( ( 1st ` F ) ` x ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							anbi2d | 
							 |-  ( f = F -> ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) <-> ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) ) )  | 
						
						
							| 22 | 
							
								17
							 | 
							fveq1d | 
							 |-  ( f = F -> ( ( 1st ` f ) ` y ) = ( ( 1st ` F ) ` y ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq2d | 
							 |-  ( f = F -> ( w J ( ( 1st ` f ) ` y ) ) = ( w J ( ( 1st ` F ) ` y ) ) )  | 
						
						
							| 24 | 
							
								18
							 | 
							opeq2d | 
							 |-  ( f = F -> <. w , ( ( 1st ` f ) ` x ) >. = <. w , ( ( 1st ` F ) ` x ) >. )  | 
						
						
							| 25 | 
							
								24 22
							 | 
							oveq12d | 
							 |-  ( f = F -> ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) = ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							fveq2 | 
							 |-  ( f = F -> ( 2nd ` f ) = ( 2nd ` F ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							oveqd | 
							 |-  ( f = F -> ( x ( 2nd ` f ) y ) = ( x ( 2nd ` F ) y ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							fveq1d | 
							 |-  ( f = F -> ( ( x ( 2nd ` f ) y ) ` k ) = ( ( x ( 2nd ` F ) y ) ` k ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eqidd | 
							 |-  ( f = F -> m = m )  | 
						
						
							| 30 | 
							
								25 28 29
							 | 
							oveq123d | 
							 |-  ( f = F -> ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							eqeq2d | 
							 |-  ( f = F -> ( g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							reubidv | 
							 |-  ( f = F -> ( E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) )  | 
						
						
							| 33 | 
							
								23 32
							 | 
							raleqbidv | 
							 |-  ( f = F -> ( A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ralbidv | 
							 |-  ( f = F -> ( A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) )  | 
						
						
							| 35 | 
							
								21 34
							 | 
							anbi12d | 
							 |-  ( f = F -> ( ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							opabbidv | 
							 |-  ( f = F -> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) | 
						
						
							| 37 | 
							
								
							 | 
							oveq1 | 
							 |-  ( w = W -> ( w J ( ( 1st ` F ) ` x ) ) = ( W J ( ( 1st ` F ) ` x ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							eleq2d | 
							 |-  ( w = W -> ( m e. ( w J ( ( 1st ` F ) ` x ) ) <-> m e. ( W J ( ( 1st ` F ) ` x ) ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							anbi2d | 
							 |-  ( w = W -> ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) <-> ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							oveq1 | 
							 |-  ( w = W -> ( w J ( ( 1st ` F ) ` y ) ) = ( W J ( ( 1st ` F ) ` y ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							opeq1 | 
							 |-  ( w = W -> <. w , ( ( 1st ` F ) ` x ) >. = <. W , ( ( 1st ` F ) ` x ) >. )  | 
						
						
							| 42 | 
							
								41
							 | 
							oveq1d | 
							 |-  ( w = W -> ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) = ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveqd | 
							 |-  ( w = W -> ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							eqeq2d | 
							 |-  ( w = W -> ( g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							reubidv | 
							 |-  ( w = W -> ( E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) )  | 
						
						
							| 46 | 
							
								40 45
							 | 
							raleqbidv | 
							 |-  ( w = W -> ( A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ralbidv | 
							 |-  ( w = W -> ( A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) )  | 
						
						
							| 48 | 
							
								39 47
							 | 
							anbi12d | 
							 |-  ( w = W -> ( ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							opabbidv | 
							 |-  ( w = W -> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) | 
						
						
							| 50 | 
							
								1 2 3 4 5
							 | 
							upfval | 
							 |-  ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) | 
						
						
							| 51 | 
							
								36 49 50
							 | 
							ovmpog | 
							 |-  ( ( F e. ( D Func E ) /\ W e. C /\ { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) | 
						
						
							| 52 | 
							
								7 6 16 51
							 | 
							syl3anc | 
							 |-  ( ph -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |