Metamath Proof Explorer


Theorem upfval3

Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses upfval.b B = Base D
upfval.c C = Base E
upfval.h H = Hom D
upfval.j J = Hom E
upfval.o O = comp E
upfval2.w φ W C
upfval3.f φ F D Func E G
Assertion upfval3 Could not format assertion : No typesetting found for |- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) with typecode |-

Proof

Step Hyp Ref Expression
1 upfval.b B = Base D
2 upfval.c C = Base E
3 upfval.h H = Hom D
4 upfval.j J = Hom E
5 upfval.o O = comp E
6 upfval2.w φ W C
7 upfval3.f φ F D Func E G
8 df-br F D Func E G F G D Func E
9 7 8 sylib φ F G D Func E
10 1 2 3 4 5 6 9 upfval2 Could not format ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) } ) : No typesetting found for |- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) } ) with typecode |-
11 relfunc Rel D Func E
12 11 brrelex12i F D Func E G F V G V
13 op1stg F V G V 1 st F G = F
14 12 13 syl F D Func E G 1 st F G = F
15 14 fveq1d F D Func E G 1 st F G x = F x
16 15 oveq2d F D Func E G W J 1 st F G x = W J F x
17 16 eleq2d F D Func E G m W J 1 st F G x m W J F x
18 17 anbi2d F D Func E G x B m W J 1 st F G x x B m W J F x
19 14 fveq1d F D Func E G 1 st F G y = F y
20 19 oveq2d F D Func E G W J 1 st F G y = W J F y
21 15 opeq2d F D Func E G W 1 st F G x = W F x
22 21 19 oveq12d F D Func E G W 1 st F G x O 1 st F G y = W F x O F y
23 op2ndg F V G V 2 nd F G = G
24 12 23 syl F D Func E G 2 nd F G = G
25 24 oveqd F D Func E G x 2 nd F G y = x G y
26 25 fveq1d F D Func E G x 2 nd F G y k = x G y k
27 eqidd F D Func E G m = m
28 22 26 27 oveq123d F D Func E G x 2 nd F G y k W 1 st F G x O 1 st F G y m = x G y k W F x O F y m
29 28 eqeq2d F D Func E G g = x 2 nd F G y k W 1 st F G x O 1 st F G y m g = x G y k W F x O F y m
30 29 reubidv F D Func E G ∃! k x H y g = x 2 nd F G y k W 1 st F G x O 1 st F G y m ∃! k x H y g = x G y k W F x O F y m
31 20 30 raleqbidv F D Func E G g W J 1 st F G y ∃! k x H y g = x 2 nd F G y k W 1 st F G x O 1 st F G y m g W J F y ∃! k x H y g = x G y k W F x O F y m
32 31 ralbidv F D Func E G y B g W J 1 st F G y ∃! k x H y g = x 2 nd F G y k W 1 st F G x O 1 st F G y m y B g W J F y ∃! k x H y g = x G y k W F x O F y m
33 18 32 anbi12d F D Func E G x B m W J 1 st F G x y B g W J 1 st F G y ∃! k x H y g = x 2 nd F G y k W 1 st F G x O 1 st F G y m x B m W J F x y B g W J F y ∃! k x H y g = x G y k W F x O F y m
34 33 opabbidv F D Func E G x m | x B m W J 1 st F G x y B g W J 1 st F G y ∃! k x H y g = x 2 nd F G y k W 1 st F G x O 1 st F G y m = x m | x B m W J F x y B g W J F y ∃! k x H y g = x G y k W F x O F y m
35 7 34 syl φ x m | x B m W J 1 st F G x y B g W J 1 st F G y ∃! k x H y g = x 2 nd F G y k W 1 st F G x O 1 st F G y m = x m | x B m W J F x y B g W J F y ∃! k x H y g = x G y k W F x O F y m
36 10 35 eqtrd Could not format ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) : No typesetting found for |- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) with typecode |-