Metamath Proof Explorer


Theorem isuplem

Description: Lemma for isup and other theorems. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypotheses upfval.b B = Base D
upfval.c C = Base E
upfval.h H = Hom D
upfval.j J = Hom E
upfval.o O = comp E
upfval2.w φ W C
upfval3.f φ F D Func E G
Assertion isuplem Could not format assertion : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 upfval.b B = Base D
2 upfval.c C = Base E
3 upfval.h H = Hom D
4 upfval.j J = Hom E
5 upfval.o O = comp E
6 upfval2.w φ W C
7 upfval3.f φ F D Func E G
8 1 2 3 4 5 6 7 upfval3 Could not format ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) : No typesetting found for |- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) with typecode |-
9 oveq1 x = X x H y = X H y
10 fveq2 x = X F x = F X
11 10 opeq2d x = X W F x = W F X
12 11 oveq1d x = X W F x O F y = W F X O F y
13 oveq1 x = X x G y = X G y
14 13 fveq1d x = X x G y k = X G y k
15 eqidd x = X m = m
16 12 14 15 oveq123d x = X x G y k W F x O F y m = X G y k W F X O F y m
17 16 eqeq2d x = X g = x G y k W F x O F y m g = X G y k W F X O F y m
18 9 17 reueqbidv x = X ∃! k x H y g = x G y k W F x O F y m ∃! k X H y g = X G y k W F X O F y m
19 18 2ralbidv x = X y B g W J F y ∃! k x H y g = x G y k W F x O F y m y B g W J F y ∃! k X H y g = X G y k W F X O F y m
20 oveq2 m = M X G y k W F X O F y m = X G y k W F X O F y M
21 20 eqeq2d m = M g = X G y k W F X O F y m g = X G y k W F X O F y M
22 21 reubidv m = M ∃! k X H y g = X G y k W F X O F y m ∃! k X H y g = X G y k W F X O F y M
23 22 2ralbidv m = M y B g W J F y ∃! k X H y g = X G y k W F X O F y m y B g W J F y ∃! k X H y g = X G y k W F X O F y M
24 eqidd x = X m = M B = B
25 simpl x = X m = M x = X
26 25 fveq2d x = X m = M F x = F X
27 26 oveq2d x = X m = M W J F x = W J F X
28 8 19 23 24 27 brab2ddw Could not format ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) with typecode |-