Metamath Proof Explorer


Theorem brab2ddw

Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses brab2dd.1 φ R = x y | x C y D ψ
brab2ddw.2 x = A ψ θ
brab2ddw.3 y = B θ χ
brab2ddw.4 x = A y = B C = U
brab2ddw.5 x = A y = B D = V
Assertion brab2ddw φ A R B A U B V χ

Proof

Step Hyp Ref Expression
1 brab2dd.1 φ R = x y | x C y D ψ
2 brab2ddw.2 x = A ψ θ
3 brab2ddw.3 y = B θ χ
4 brab2ddw.4 x = A y = B C = U
5 brab2ddw.5 x = A y = B D = V
6 2 3 sylan9bb x = A y = B ψ χ
7 6 adantl φ x = A y = B ψ χ
8 simpl x = A y = B x = A
9 8 4 eleq12d x = A y = B x C A U
10 simpr x = A y = B y = B
11 10 5 eleq12d x = A y = B y D B V
12 9 11 anbi12d x = A y = B x C y D A U B V
13 12 adantl φ x = A y = B x C y D A U B V
14 1 7 13 brab2dd φ A R B A U B V χ