Step |
Hyp |
Ref |
Expression |
1 |
|
brab2dd.1 |
⊢ ( 𝜑 → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝜓 ) } ) |
2 |
|
brab2ddw.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
brab2ddw.3 |
⊢ ( 𝑦 = 𝐵 → ( 𝜃 ↔ 𝜒 ) ) |
4 |
|
brab2ddw.4 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝑈 ) |
5 |
|
brab2ddw.5 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐷 = 𝑉 ) |
6 |
2 3
|
sylan9bb |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
8 |
|
simpl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) |
9 |
8 4
|
eleq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝑈 ) ) |
10 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
11 |
10 5
|
eleq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 ∈ 𝐷 ↔ 𝐵 ∈ 𝑉 ) ) |
12 |
9 11
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) ) |
14 |
1 7 13
|
brab2dd |
⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝜒 ) ) ) |