Metamath Proof Explorer


Theorem brab2ddw2

Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses brab2dd.1 ( 𝜑𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜓 ) } )
brab2ddw.2 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
brab2ddw.3 ( 𝑦 = 𝐵 → ( 𝜃𝜒 ) )
brab2ddw2.4 ( 𝑥 = 𝐴𝐶 = 𝑈 )
brab2ddw2.5 ( 𝑦 = 𝐵𝐷 = 𝑉 )
Assertion brab2ddw2 ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴𝑈𝐵𝑉 ) ∧ 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 brab2dd.1 ( 𝜑𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜓 ) } )
2 brab2ddw.2 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
3 brab2ddw.3 ( 𝑦 = 𝐵 → ( 𝜃𝜒 ) )
4 brab2ddw2.4 ( 𝑥 = 𝐴𝐶 = 𝑈 )
5 brab2ddw2.5 ( 𝑦 = 𝐵𝐷 = 𝑉 )
6 2 3 sylan9bb ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜓𝜒 ) )
7 6 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
8 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
9 8 4 eleq12d ( 𝑥 = 𝐴 → ( 𝑥𝐶𝐴𝑈 ) )
10 id ( 𝑦 = 𝐵𝑦 = 𝐵 )
11 10 5 eleq12d ( 𝑦 = 𝐵 → ( 𝑦𝐷𝐵𝑉 ) )
12 9 11 bi2anan9 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑥𝐶𝑦𝐷 ) ↔ ( 𝐴𝑈𝐵𝑉 ) ) )
13 12 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( ( 𝑥𝐶𝑦𝐷 ) ↔ ( 𝐴𝑈𝐵𝑉 ) ) )
14 1 7 13 brab2dd ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴𝑈𝐵𝑉 ) ∧ 𝜒 ) ) )