| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							brab2dd.1 | 
							 |-  ( ph -> R = { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ps ) } ) | 
						
						
							| 2 | 
							
								
							 | 
							brab2ddw.2 | 
							 |-  ( x = A -> ( ps <-> th ) )  | 
						
						
							| 3 | 
							
								
							 | 
							brab2ddw.3 | 
							 |-  ( y = B -> ( th <-> ch ) )  | 
						
						
							| 4 | 
							
								
							 | 
							brab2ddw.4 | 
							 |-  ( ( x = A /\ y = B ) -> C = U )  | 
						
						
							| 5 | 
							
								
							 | 
							brab2ddw.5 | 
							 |-  ( ( x = A /\ y = B ) -> D = V )  | 
						
						
							| 6 | 
							
								2 3
							 | 
							sylan9bb | 
							 |-  ( ( x = A /\ y = B ) -> ( ps <-> ch ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl | 
							 |-  ( ( x = A /\ y = B ) -> x = A )  | 
						
						
							| 9 | 
							
								8 4
							 | 
							eleq12d | 
							 |-  ( ( x = A /\ y = B ) -> ( x e. C <-> A e. U ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							 |-  ( ( x = A /\ y = B ) -> y = B )  | 
						
						
							| 11 | 
							
								10 5
							 | 
							eleq12d | 
							 |-  ( ( x = A /\ y = B ) -> ( y e. D <-> B e. V ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							anbi12d | 
							 |-  ( ( x = A /\ y = B ) -> ( ( x e. C /\ y e. D ) <-> ( A e. U /\ B e. V ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantl | 
							 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( x e. C /\ y e. D ) <-> ( A e. U /\ B e. V ) ) )  | 
						
						
							| 14 | 
							
								1 7 13
							 | 
							brab2dd | 
							 |-  ( ph -> ( A R B <-> ( ( A e. U /\ B e. V ) /\ ch ) ) )  |