Step |
Hyp |
Ref |
Expression |
1 |
|
brab2dd.1 |
|- ( ph -> R = { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ps ) } ) |
2 |
|
brab2ddw.2 |
|- ( x = A -> ( ps <-> th ) ) |
3 |
|
brab2ddw.3 |
|- ( y = B -> ( th <-> ch ) ) |
4 |
|
brab2ddw.4 |
|- ( ( x = A /\ y = B ) -> C = U ) |
5 |
|
brab2ddw.5 |
|- ( ( x = A /\ y = B ) -> D = V ) |
6 |
2 3
|
sylan9bb |
|- ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) |
7 |
6
|
adantl |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
8 |
|
simpl |
|- ( ( x = A /\ y = B ) -> x = A ) |
9 |
8 4
|
eleq12d |
|- ( ( x = A /\ y = B ) -> ( x e. C <-> A e. U ) ) |
10 |
|
simpr |
|- ( ( x = A /\ y = B ) -> y = B ) |
11 |
10 5
|
eleq12d |
|- ( ( x = A /\ y = B ) -> ( y e. D <-> B e. V ) ) |
12 |
9 11
|
anbi12d |
|- ( ( x = A /\ y = B ) -> ( ( x e. C /\ y e. D ) <-> ( A e. U /\ B e. V ) ) ) |
13 |
12
|
adantl |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( x e. C /\ y e. D ) <-> ( A e. U /\ B e. V ) ) ) |
14 |
1 7 13
|
brab2dd |
|- ( ph -> ( A R B <-> ( ( A e. U /\ B e. V ) /\ ch ) ) ) |