Description: The set of universal pairs is a relation. (Contributed by Zhi Wang, 25-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | relup | |- Rel ( F ( D UP E ) W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
2 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
3 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
4 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
5 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
6 | 1 2 3 4 5 | upfval | |- ( D UP E ) = ( f e. ( D Func E ) , w e. ( Base ` E ) |-> { <. x , m >. | ( ( x e. ( Base ` D ) /\ m e. ( w ( Hom ` E ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` D ) A. g e. ( w ( Hom ` E ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` D ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` E ) ( ( 1st ` f ) ` y ) ) m ) ) } ) |
7 | 6 | relmpoopab | |- Rel ( F ( D UP E ) W ) |