| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldmg |
|- ( X e. dom ( F ( D UP E ) W ) -> ( X e. dom ( F ( D UP E ) W ) <-> E. m X ( F ( D UP E ) W ) m ) ) |
| 2 |
1
|
ibi |
|- ( X e. dom ( F ( D UP E ) W ) -> E. m X ( F ( D UP E ) W ) m ) |
| 3 |
|
simpr |
|- ( ( X e. dom ( F ( D UP E ) W ) /\ X ( F ( D UP E ) W ) m ) -> X ( F ( D UP E ) W ) m ) |
| 4 |
3
|
up1st2nd |
|- ( ( X e. dom ( F ( D UP E ) W ) /\ X ( F ( D UP E ) W ) m ) -> X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( D UP E ) W ) m ) |
| 5 |
4
|
uprcl2 |
|- ( ( X e. dom ( F ( D UP E ) W ) /\ X ( F ( D UP E ) W ) m ) -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 6 |
2 5
|
exlimddv |
|- ( X e. dom ( F ( D UP E ) W ) -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 7 |
6
|
funcrcl2 |
|- ( X e. dom ( F ( D UP E ) W ) -> D e. Cat ) |
| 8 |
6
|
funcrcl3 |
|- ( X e. dom ( F ( D UP E ) W ) -> E e. Cat ) |
| 9 |
7 8
|
jca |
|- ( X e. dom ( F ( D UP E ) W ) -> ( D e. Cat /\ E e. Cat ) ) |