Metamath Proof Explorer


Theorem uobrcl

Description: Reverse closure for universal object. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Assertion uobrcl
|- ( X e. dom ( F ( D UP E ) W ) -> ( D e. Cat /\ E e. Cat ) )

Proof

Step Hyp Ref Expression
1 eldmg
 |-  ( X e. dom ( F ( D UP E ) W ) -> ( X e. dom ( F ( D UP E ) W ) <-> E. m X ( F ( D UP E ) W ) m ) )
2 1 ibi
 |-  ( X e. dom ( F ( D UP E ) W ) -> E. m X ( F ( D UP E ) W ) m )
3 simpr
 |-  ( ( X e. dom ( F ( D UP E ) W ) /\ X ( F ( D UP E ) W ) m ) -> X ( F ( D UP E ) W ) m )
4 3 up1st2nd
 |-  ( ( X e. dom ( F ( D UP E ) W ) /\ X ( F ( D UP E ) W ) m ) -> X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( D UP E ) W ) m )
5 4 uprcl2
 |-  ( ( X e. dom ( F ( D UP E ) W ) /\ X ( F ( D UP E ) W ) m ) -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) )
6 2 5 exlimddv
 |-  ( X e. dom ( F ( D UP E ) W ) -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) )
7 6 funcrcl2
 |-  ( X e. dom ( F ( D UP E ) W ) -> D e. Cat )
8 6 funcrcl3
 |-  ( X e. dom ( F ( D UP E ) W ) -> E e. Cat )
9 7 8 jca
 |-  ( X e. dom ( F ( D UP E ) W ) -> ( D e. Cat /\ E e. Cat ) )