| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptra.y |
|- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
| 2 |
|
uptra.k |
|- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 3 |
|
uptra.g |
|- ( ph -> ( K o.func F ) = G ) |
| 4 |
|
uptra.b |
|- B = ( Base ` D ) |
| 5 |
|
uptra.x |
|- ( ph -> X e. B ) |
| 6 |
|
uptra.f |
|- ( ph -> F e. ( C Func D ) ) |
| 7 |
|
uptra.n |
|- ( ph -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) = N ) |
| 8 |
|
uptra.j |
|- J = ( Hom ` D ) |
| 9 |
|
uptra.m |
|- ( ph -> M e. ( X J ( ( 1st ` F ) ` Z ) ) ) |
| 10 |
|
relfull |
|- Rel ( D Full E ) |
| 11 |
|
relin1 |
|- ( Rel ( D Full E ) -> Rel ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 12 |
10 11
|
ax-mp |
|- Rel ( ( D Full E ) i^i ( D Faith E ) ) |
| 13 |
|
1st2ndbr |
|- ( ( Rel ( ( D Full E ) i^i ( D Faith E ) ) /\ K e. ( ( D Full E ) i^i ( D Faith E ) ) ) -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 14 |
12 2 13
|
sylancr |
|- ( ph -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 15 |
|
inss1 |
|- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Full E ) |
| 16 |
|
fullfunc |
|- ( D Full E ) C_ ( D Func E ) |
| 17 |
15 16
|
sstri |
|- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Func E ) |
| 18 |
17 2
|
sselid |
|- ( ph -> K e. ( D Func E ) ) |
| 19 |
6 18
|
cofu1st2nd |
|- ( ph -> ( K o.func F ) = ( <. ( 1st ` K ) , ( 2nd ` K ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 20 |
|
relfunc |
|- Rel ( C Func E ) |
| 21 |
6 18
|
cofucl |
|- ( ph -> ( K o.func F ) e. ( C Func E ) ) |
| 22 |
3 21
|
eqeltrrd |
|- ( ph -> G e. ( C Func E ) ) |
| 23 |
|
1st2nd |
|- ( ( Rel ( C Func E ) /\ G e. ( C Func E ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 24 |
20 22 23
|
sylancr |
|- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 25 |
3 19 24
|
3eqtr3d |
|- ( ph -> ( <. ( 1st ` K ) , ( 2nd ` K ) >. o.func <. ( 1st ` F ) , ( 2nd ` F ) >. ) = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 26 |
6
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 27 |
1 14 25 4 5 26 7 8 9
|
uptr |
|- ( ph -> ( Z ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP D ) X ) M <-> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) ) |
| 28 |
6
|
up1st2ndb |
|- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP D ) X ) M ) ) |
| 29 |
22
|
up1st2ndb |
|- ( ph -> ( Z ( G ( C UP E ) Y ) N <-> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) ) |
| 30 |
27 28 29
|
3bitr4d |
|- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) |