Metamath Proof Explorer


Theorem uptra

Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptra.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
uptra.k ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
uptra.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
uptra.b 𝐵 = ( Base ‘ 𝐷 )
uptra.x ( 𝜑𝑋𝐵 )
uptra.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
uptra.n ( 𝜑 → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 )
uptra.j 𝐽 = ( Hom ‘ 𝐷 )
uptra.m ( 𝜑𝑀 ∈ ( 𝑋 𝐽 ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
Assertion uptra ( 𝜑 → ( 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) )

Proof

Step Hyp Ref Expression
1 uptra.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
2 uptra.k ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
3 uptra.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
4 uptra.b 𝐵 = ( Base ‘ 𝐷 )
5 uptra.x ( 𝜑𝑋𝐵 )
6 uptra.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
7 uptra.n ( 𝜑 → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 )
8 uptra.j 𝐽 = ( Hom ‘ 𝐷 )
9 uptra.m ( 𝜑𝑀 ∈ ( 𝑋 𝐽 ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
10 relfull Rel ( 𝐷 Full 𝐸 )
11 relin1 ( Rel ( 𝐷 Full 𝐸 ) → Rel ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
12 10 11 ax-mp Rel ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) )
13 1st2ndbr ( ( Rel ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ∧ 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) → ( 1st𝐾 ) ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ( 2nd𝐾 ) )
14 12 2 13 sylancr ( 𝜑 → ( 1st𝐾 ) ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ( 2nd𝐾 ) )
15 inss1 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Full 𝐸 )
16 fullfunc ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 )
17 15 16 sstri ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Func 𝐸 )
18 17 2 sselid ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
19 6 18 cofu1st2nd ( 𝜑 → ( 𝐾func 𝐹 ) = ( ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∘func ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
20 relfunc Rel ( 𝐶 Func 𝐸 )
21 6 18 cofucl ( 𝜑 → ( 𝐾func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) )
22 3 21 eqeltrrd ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐸 ) )
23 1st2nd ( ( Rel ( 𝐶 Func 𝐸 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) → 𝐺 = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
24 20 22 23 sylancr ( 𝜑𝐺 = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
25 3 19 24 3eqtr3d ( 𝜑 → ( ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∘func ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) = ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ )
26 6 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
27 1 14 25 4 5 26 7 8 9 uptr ( 𝜑 → ( 𝑍 ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀𝑍 ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) )
28 6 up1st2ndb ( 𝜑 → ( 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀𝑍 ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) )
29 22 up1st2ndb ( 𝜑 → ( 𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁𝑍 ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) )
30 27 28 29 3bitr4d ( 𝜑 → ( 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) )