| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptr.y |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) |
| 2 |
|
uptr.r |
⊢ ( 𝜑 → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) |
| 3 |
|
uptr.k |
⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 4 |
|
uptr.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 5 |
|
uptr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
uptr.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 7 |
|
uptr.n |
⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 8 |
|
uptr.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 9 |
|
uptr.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) |
| 12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) |
| 13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) |
| 14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑋 ∈ 𝐵 ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 18 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 20 |
11 19
|
uprcl4 |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 21 |
12 13 14 4 15 16 17 8 18 19 20
|
uptrlem3 |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| 22 |
11 21
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) |
| 23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) |
| 25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 26 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑋 ∈ 𝐵 ) |
| 27 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 30 |
10 19
|
uprcl4 |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 31 |
23 24 25 4 26 27 28 8 29 19 30
|
uptrlem3 |
⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| 32 |
10 22 31
|
bibiad |
⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |