Metamath Proof Explorer


Theorem uptr

Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptr.y φ R X = Y
uptr.r φ R D Full E D Faith E S
uptr.k φ R S func F G = K L
uptr.b B = Base D
uptr.x φ X B
uptr.f φ F C Func D G
uptr.n φ X S F Z M = N
uptr.j J = Hom D
uptr.m φ M X J F Z
Assertion uptr Could not format assertion : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uptr.y φ R X = Y
2 uptr.r φ R D Full E D Faith E S
3 uptr.k φ R S func F G = K L
4 uptr.b B = Base D
5 uptr.x φ X B
6 uptr.f φ F C Func D G
7 uptr.n φ X S F Z M = N
8 uptr.j J = Hom D
9 uptr.m φ M X J F Z
10 simpr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z ( <. F , G >. ( C UP D ) X ) M ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z ( <. F , G >. ( C UP D ) X ) M ) with typecode |-
11 simpr Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z ( <. K , L >. ( C UP E ) Y ) N ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z ( <. K , L >. ( C UP E ) Y ) N ) with typecode |-
12 1 adantr Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( R ` X ) = Y ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( R ` X ) = Y ) with typecode |-
13 2 adantr Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) with typecode |-
14 3 adantr Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) with typecode |-
15 5 adantr Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> X e. B ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> X e. B ) with typecode |-
16 6 adantr Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> F ( C Func D ) G ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> F ( C Func D ) G ) with typecode |-
17 7 adantr Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) with typecode |-
18 9 adantr Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> M e. ( X J ( F ` Z ) ) ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> M e. ( X J ( F ` Z ) ) ) with typecode |-
19 eqid Base C = Base C
20 11 19 uprcl4 Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z e. ( Base ` C ) ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z e. ( Base ` C ) ) with typecode |-
21 12 13 14 4 15 16 17 8 18 19 20 uptrlem3 Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |-
22 11 21 mpbird Could not format ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z ( <. F , G >. ( C UP D ) X ) M ) : No typesetting found for |- ( ( ph /\ Z ( <. K , L >. ( C UP E ) Y ) N ) -> Z ( <. F , G >. ( C UP D ) X ) M ) with typecode |-
23 1 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( R ` X ) = Y ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( R ` X ) = Y ) with typecode |-
24 2 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) with typecode |-
25 3 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) with typecode |-
26 5 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> X e. B ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> X e. B ) with typecode |-
27 6 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> F ( C Func D ) G ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> F ( C Func D ) G ) with typecode |-
28 7 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) with typecode |-
29 9 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> M e. ( X J ( F ` Z ) ) ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> M e. ( X J ( F ` Z ) ) ) with typecode |-
30 10 19 uprcl4 Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z e. ( Base ` C ) ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z e. ( Base ` C ) ) with typecode |-
31 23 24 25 4 26 27 28 8 29 19 30 uptrlem3 Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |-
32 10 22 31 bibiad Could not format ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |-