Metamath Proof Explorer


Theorem uptri

Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptr.y φ R X = Y
uptr.r φ R D Full E D Faith E S
uptr.k φ R S func F G = K L
uptri.n φ X S F Z M = N
uptri.z No typesetting found for |- ( ph -> Z ( <. F , G >. ( C UP D ) X ) M ) with typecode |-
Assertion uptri Could not format assertion : No typesetting found for |- ( ph -> Z ( <. K , L >. ( C UP E ) Y ) N ) with typecode |-

Proof

Step Hyp Ref Expression
1 uptr.y φ R X = Y
2 uptr.r φ R D Full E D Faith E S
3 uptr.k φ R S func F G = K L
4 uptri.n φ X S F Z M = N
5 uptri.z Could not format ( ph -> Z ( <. F , G >. ( C UP D ) X ) M ) : No typesetting found for |- ( ph -> Z ( <. F , G >. ( C UP D ) X ) M ) with typecode |-
6 1 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( R ` X ) = Y ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( R ` X ) = Y ) with typecode |-
7 2 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) with typecode |-
8 3 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) with typecode |-
9 eqid Base D = Base D
10 5 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z ( <. F , G >. ( C UP D ) X ) M ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z ( <. F , G >. ( C UP D ) X ) M ) with typecode |-
11 10 9 uprcl3 Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> X e. ( Base ` D ) ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> X e. ( Base ` D ) ) with typecode |-
12 10 uprcl2 Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> F ( C Func D ) G ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> F ( C Func D ) G ) with typecode |-
13 4 adantr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) with typecode |-
14 eqid Hom D = Hom D
15 10 14 uprcl5 Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> M e. ( X ( Hom ` D ) ( F ` Z ) ) ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> M e. ( X ( Hom ` D ) ( F ` Z ) ) ) with typecode |-
16 6 7 8 9 11 12 13 14 15 uptr Could not format ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |-
17 5 16 mpdan Could not format ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) with typecode |-
18 5 17 mpbid Could not format ( ph -> Z ( <. K , L >. ( C UP E ) Y ) N ) : No typesetting found for |- ( ph -> Z ( <. K , L >. ( C UP E ) Y ) N ) with typecode |-