Metamath Proof Explorer


Theorem uptri

Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptr.y
|- ( ph -> ( R ` X ) = Y )
uptr.r
|- ( ph -> R ( ( D Full E ) i^i ( D Faith E ) ) S )
uptr.k
|- ( ph -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. )
uptri.n
|- ( ph -> ( ( X S ( F ` Z ) ) ` M ) = N )
uptri.z
|- ( ph -> Z ( <. F , G >. ( C UP D ) X ) M )
Assertion uptri
|- ( ph -> Z ( <. K , L >. ( C UP E ) Y ) N )

Proof

Step Hyp Ref Expression
1 uptr.y
 |-  ( ph -> ( R ` X ) = Y )
2 uptr.r
 |-  ( ph -> R ( ( D Full E ) i^i ( D Faith E ) ) S )
3 uptr.k
 |-  ( ph -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. )
4 uptri.n
 |-  ( ph -> ( ( X S ( F ` Z ) ) ` M ) = N )
5 uptri.z
 |-  ( ph -> Z ( <. F , G >. ( C UP D ) X ) M )
6 1 adantr
 |-  ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( R ` X ) = Y )
7 2 adantr
 |-  ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S )
8 3 adantr
 |-  ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. )
9 eqid
 |-  ( Base ` D ) = ( Base ` D )
10 5 adantr
 |-  ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z ( <. F , G >. ( C UP D ) X ) M )
11 10 9 uprcl3
 |-  ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> X e. ( Base ` D ) )
12 10 uprcl2
 |-  ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> F ( C Func D ) G )
13 4 adantr
 |-  ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( ( X S ( F ` Z ) ) ` M ) = N )
14 eqid
 |-  ( Hom ` D ) = ( Hom ` D )
15 10 14 uprcl5
 |-  ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> M e. ( X ( Hom ` D ) ( F ` Z ) ) )
16 6 7 8 9 11 12 13 14 15 uptr
 |-  ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) )
17 5 16 mpdan
 |-  ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) )
18 5 17 mpbid
 |-  ( ph -> Z ( <. K , L >. ( C UP E ) Y ) N )