Metamath Proof Explorer
		
		
		
		Description:  Eliminate an hypothesis th in a biconditional.  (Contributed by Thierry Arnoux, 4-May-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | bibiad.1 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜃 ) | 
					
						|  |  | bibiad.2 | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝜃 ) | 
					
						|  |  | bibiad.3 | ⊢ ( ( 𝜑  ∧  𝜃 )  →  ( 𝜓  ↔  𝜒 ) ) | 
				
					|  | Assertion | bibiad | ⊢  ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bibiad.1 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜃 ) | 
						
							| 2 |  | bibiad.2 | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝜃 ) | 
						
							| 3 |  | bibiad.3 | ⊢ ( ( 𝜑  ∧  𝜃 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜑 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜓 ) | 
						
							| 6 | 3 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝜃 )  ∧  𝜓 )  →  𝜒 ) | 
						
							| 7 | 4 1 5 6 | syl21anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜒 ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝜑 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝜒 ) | 
						
							| 10 | 3 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝜃 )  ∧  𝜒 )  →  𝜓 ) | 
						
							| 11 | 8 2 9 10 | syl21anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝜓 ) | 
						
							| 12 | 7 11 | impbida | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) |