| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bibiad.1 |
|- ( ( ph /\ ps ) -> th ) |
| 2 |
|
bibiad.2 |
|- ( ( ph /\ ch ) -> th ) |
| 3 |
|
bibiad.3 |
|- ( ( ph /\ th ) -> ( ps <-> ch ) ) |
| 4 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
| 5 |
|
simpr |
|- ( ( ph /\ ps ) -> ps ) |
| 6 |
3
|
biimpa |
|- ( ( ( ph /\ th ) /\ ps ) -> ch ) |
| 7 |
4 1 5 6
|
syl21anc |
|- ( ( ph /\ ps ) -> ch ) |
| 8 |
|
simpl |
|- ( ( ph /\ ch ) -> ph ) |
| 9 |
|
simpr |
|- ( ( ph /\ ch ) -> ch ) |
| 10 |
3
|
biimpar |
|- ( ( ( ph /\ th ) /\ ch ) -> ps ) |
| 11 |
8 2 9 10
|
syl21anc |
|- ( ( ph /\ ch ) -> ps ) |
| 12 |
7 11
|
impbida |
|- ( ph -> ( ps <-> ch ) ) |