| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptr.y |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) |
| 2 |
|
uptr.r |
⊢ ( 𝜑 → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) |
| 3 |
|
uptr.k |
⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 4 |
|
uptr.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 5 |
|
uptr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
uptr.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 7 |
|
uptr.n |
⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 8 |
|
uptr.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 9 |
|
uptr.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 10 |
|
uptrlem3.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 11 |
|
uptrlem3.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) |
| 12 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 13 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 14 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 15 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 16 |
5 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) |
| 19 |
11 10
|
eleqtrdi |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 22 |
21 10
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 26 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 28 |
12 8 13 14 15 17 18 20 22 23 24 25 26 27
|
uptrlem1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) ℎ = ( ( ( 𝑍 𝐿 𝑦 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑁 ) ↔ ∀ 𝑔 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 29 |
28
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) ℎ = ( ( ( 𝑍 𝐿 𝑦 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑁 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑔 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 31 |
|
inss1 |
⊢ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Full 𝐸 ) |
| 32 |
|
fullfunc |
⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) |
| 33 |
31 32
|
sstri |
⊢ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Func 𝐸 ) |
| 34 |
33
|
ssbri |
⊢ ( 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 → 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 ) |
| 35 |
2 34
|
syl |
⊢ ( 𝜑 → 𝑅 ( 𝐷 Func 𝐸 ) 𝑆 ) |
| 36 |
4 30 35
|
funcf1 |
⊢ ( 𝜑 → 𝑅 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ) |
| 37 |
36 5
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) ∈ ( Base ‘ 𝐸 ) ) |
| 38 |
1 37
|
eqeltrrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐸 ) ) |
| 39 |
6 35
|
cofucla |
⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| 40 |
3 39
|
eqeltrrd |
⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 41 |
|
df-br |
⊢ ( 𝐾 ( 𝐶 Func 𝐸 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐸 ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐸 ) 𝐿 ) |
| 43 |
10 4 6
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 44 |
43 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑍 ) ∈ 𝐵 ) |
| 45 |
4 8 13 35 5 44
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) : ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ⟶ ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝐹 ‘ 𝑍 ) ) ) ) |
| 46 |
45 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) ∈ ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝐹 ‘ 𝑍 ) ) ) ) |
| 47 |
10 6 35 3 11
|
cofu1a |
⊢ ( 𝜑 → ( 𝑅 ‘ ( 𝐹 ‘ 𝑍 ) ) = ( 𝐾 ‘ 𝑍 ) ) |
| 48 |
1 47
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝑅 ‘ ( 𝐹 ‘ 𝑍 ) ) ) = ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑍 ) ) ) |
| 49 |
46 7 48
|
3eltr3d |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑍 ) ) ) |
| 50 |
10 30 12 13 15 38 42 11 49
|
isup |
⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ↔ ∀ 𝑦 ∈ 𝐴 ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) ℎ = ( ( ( 𝑍 𝐿 𝑦 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ( comp ‘ 𝐸 ) ( 𝐾 ‘ 𝑦 ) ) 𝑁 ) ) ) |
| 51 |
10 4 12 8 14 5 6 11 9
|
isup |
⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑔 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑦 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
| 52 |
29 50 51
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |