Metamath Proof Explorer


Theorem cofucla

Description: The composition of two functors is a functor. Proposition 3.23 of Adamek p. 33. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses cofucla.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
cofucla.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
Assertion cofucla ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) ∈ ( 𝐶 Func 𝐸 ) )

Proof

Step Hyp Ref Expression
1 cofucla.f ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
2 cofucla.k ( 𝜑𝐾 ( 𝐷 Func 𝐸 ) 𝐿 )
3 df-br ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
4 1 3 sylib ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐶 Func 𝐷 ) )
5 df-br ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ↔ ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
6 2 5 sylib ( 𝜑 → ⟨ 𝐾 , 𝐿 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
7 4 6 cofucl ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) ∈ ( 𝐶 Func 𝐸 ) )