Description: The composition of two functors is a functor. Proposition 3.23 of Adamek p. 33. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofucla.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| cofucla.k | ⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) | ||
| Assertion | cofucla | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofucla.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 2 | cofucla.k | ⊢ ( 𝜑 → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) | |
| 3 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 4 | 1 3 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 5 | df-br | ⊢ ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 6 | 2 5 | sylib | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 7 | 4 6 | cofucl | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) ∈ ( 𝐶 Func 𝐸 ) ) |