| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funchomf.1 |
⊢ ( 𝜑 → 𝐹 ( 𝐴 Func 𝐶 ) 𝐺 ) |
| 2 |
|
funchomf.2 |
⊢ ( 𝜑 → 𝐹 ( 𝐵 Func 𝐷 ) 𝐺 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 4 |
|
eqid |
⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) |
| 5 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝐹 ( 𝐴 Func 𝐶 ) 𝐺 ) |
| 7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 9 |
3 4 5 6 7 8
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 |
9
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
| 12 |
|
eqid |
⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) |
| 13 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝐹 ( 𝐵 Func 𝐷 ) 𝐺 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 16 |
3 15 1
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 17 |
16
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐴 ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 19 |
11 18 2
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 20 |
19
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐵 ) ) |
| 21 |
|
fndmu |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝐴 ) ∧ 𝐹 Fn ( Base ‘ 𝐵 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 22 |
17 20 21
|
syl2anc |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 24 |
7 23
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐵 ) ) |
| 25 |
8 23
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐵 ) ) |
| 26 |
11 12 13 14 24 25
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 |
26
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 28 |
|
fndmu |
⊢ ( ( ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∧ ( 𝑥 𝐺 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 29 |
10 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 30 |
29
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 31 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) ) |
| 32 |
4 12 31 22
|
homfeq |
⊢ ( 𝜑 → ( ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) ) |
| 33 |
30 32
|
mpbird |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |