Metamath Proof Explorer


Theorem funchomf

Description: Source categories of a functor have the same set of objects and morphisms. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses funchomf.1 φ F A Func C G
funchomf.2 φ F B Func D G
Assertion funchomf φ Hom 𝑓 A = Hom 𝑓 B

Proof

Step Hyp Ref Expression
1 funchomf.1 φ F A Func C G
2 funchomf.2 φ F B Func D G
3 eqid Base A = Base A
4 eqid Hom A = Hom A
5 eqid Hom C = Hom C
6 1 adantr φ x Base A y Base A F A Func C G
7 simprl φ x Base A y Base A x Base A
8 simprr φ x Base A y Base A y Base A
9 3 4 5 6 7 8 funcf2 φ x Base A y Base A x G y : x Hom A y F x Hom C F y
10 9 ffnd φ x Base A y Base A x G y Fn x Hom A y
11 eqid Base B = Base B
12 eqid Hom B = Hom B
13 eqid Hom D = Hom D
14 2 adantr φ x Base A y Base A F B Func D G
15 eqid Base C = Base C
16 3 15 1 funcf1 φ F : Base A Base C
17 16 ffnd φ F Fn Base A
18 eqid Base D = Base D
19 11 18 2 funcf1 φ F : Base B Base D
20 19 ffnd φ F Fn Base B
21 fndmu F Fn Base A F Fn Base B Base A = Base B
22 17 20 21 syl2anc φ Base A = Base B
23 22 adantr φ x Base A y Base A Base A = Base B
24 7 23 eleqtrd φ x Base A y Base A x Base B
25 8 23 eleqtrd φ x Base A y Base A y Base B
26 11 12 13 14 24 25 funcf2 φ x Base A y Base A x G y : x Hom B y F x Hom D F y
27 26 ffnd φ x Base A y Base A x G y Fn x Hom B y
28 fndmu x G y Fn x Hom A y x G y Fn x Hom B y x Hom A y = x Hom B y
29 10 27 28 syl2anc φ x Base A y Base A x Hom A y = x Hom B y
30 29 ralrimivva φ x Base A y Base A x Hom A y = x Hom B y
31 eqidd φ Base A = Base A
32 4 12 31 22 homfeq φ Hom 𝑓 A = Hom 𝑓 B x Base A y Base A x Hom A y = x Hom B y
33 30 32 mpbird φ Hom 𝑓 A = Hom 𝑓 B