Metamath Proof Explorer


Theorem fndmu

Description: A function has a unique domain. (Contributed by NM, 11-Aug-1994)

Ref Expression
Assertion fndmu FFnAFFnBA=B

Proof

Step Hyp Ref Expression
1 fndm FFnAdomF=A
2 fndm FFnBdomF=B
3 1 2 sylan9req FFnAFFnBA=B