| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funchomf.1 |
|- ( ph -> F ( A Func C ) G ) |
| 2 |
|
funchomf.2 |
|- ( ph -> F ( B Func D ) G ) |
| 3 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 4 |
|
eqid |
|- ( Hom ` A ) = ( Hom ` A ) |
| 5 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> F ( A Func C ) G ) |
| 7 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` A ) ) |
| 8 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` A ) ) |
| 9 |
3 4 5 6 7 8
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x G y ) : ( x ( Hom ` A ) y ) --> ( ( F ` x ) ( Hom ` C ) ( F ` y ) ) ) |
| 10 |
9
|
ffnd |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x G y ) Fn ( x ( Hom ` A ) y ) ) |
| 11 |
|
eqid |
|- ( Base ` B ) = ( Base ` B ) |
| 12 |
|
eqid |
|- ( Hom ` B ) = ( Hom ` B ) |
| 13 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 14 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> F ( B Func D ) G ) |
| 15 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 16 |
3 15 1
|
funcf1 |
|- ( ph -> F : ( Base ` A ) --> ( Base ` C ) ) |
| 17 |
16
|
ffnd |
|- ( ph -> F Fn ( Base ` A ) ) |
| 18 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 19 |
11 18 2
|
funcf1 |
|- ( ph -> F : ( Base ` B ) --> ( Base ` D ) ) |
| 20 |
19
|
ffnd |
|- ( ph -> F Fn ( Base ` B ) ) |
| 21 |
|
fndmu |
|- ( ( F Fn ( Base ` A ) /\ F Fn ( Base ` B ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 22 |
17 20 21
|
syl2anc |
|- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 24 |
7 23
|
eleqtrd |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` B ) ) |
| 25 |
8 23
|
eleqtrd |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` B ) ) |
| 26 |
11 12 13 14 24 25
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x G y ) : ( x ( Hom ` B ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 27 |
26
|
ffnd |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x G y ) Fn ( x ( Hom ` B ) y ) ) |
| 28 |
|
fndmu |
|- ( ( ( x G y ) Fn ( x ( Hom ` A ) y ) /\ ( x G y ) Fn ( x ( Hom ` B ) y ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 29 |
10 27 28
|
syl2anc |
|- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 30 |
29
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 31 |
|
eqidd |
|- ( ph -> ( Base ` A ) = ( Base ` A ) ) |
| 32 |
4 12 31 22
|
homfeq |
|- ( ph -> ( ( Homf ` A ) = ( Homf ` B ) <-> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) ) |
| 33 |
30 32
|
mpbird |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |