| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opex |
|- <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. e. _V |
| 2 |
1
|
csbex |
|- [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. e. _V |
| 3 |
|
df-idfu |
|- idFunc = ( t e. Cat |-> [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. ) |
| 4 |
2 3
|
dmmpti |
|- dom idFunc = Cat |
| 5 |
|
relfunc |
|- Rel ( D Func E ) |
| 6 |
|
0nelrel0 |
|- ( Rel ( D Func E ) -> -. (/) e. ( D Func E ) ) |
| 7 |
5 6
|
ax-mp |
|- -. (/) e. ( D Func E ) |
| 8 |
4 7
|
ndmfvrcl |
|- ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat ) |