| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opex |
⊢ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ∈ V |
| 2 |
1
|
csbex |
⊢ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ∈ V |
| 3 |
|
df-idfu |
⊢ idfunc = ( 𝑡 ∈ Cat ↦ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ) |
| 4 |
2 3
|
dmmpti |
⊢ dom idfunc = Cat |
| 5 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 6 |
|
0nelrel0 |
⊢ ( Rel ( 𝐷 Func 𝐸 ) → ¬ ∅ ∈ ( 𝐷 Func 𝐸 ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ¬ ∅ ∈ ( 𝐷 Func 𝐸 ) |
| 8 |
4 7
|
ndmfvrcl |
⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) |