Metamath Proof Explorer


Theorem idfu1stf1o

Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses idfu1stf1o.i 𝐼 = ( idfunc𝐶 )
idfu1stf1o.b 𝐵 = ( Base ‘ 𝐶 )
Assertion idfu1stf1o ( 𝐶 ∈ Cat → ( 1st𝐼 ) : 𝐵1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 idfu1stf1o.i 𝐼 = ( idfunc𝐶 )
2 idfu1stf1o.b 𝐵 = ( Base ‘ 𝐶 )
3 f1oi ( I ↾ 𝐵 ) : 𝐵1-1-onto𝐵
4 id ( 𝐶 ∈ Cat → 𝐶 ∈ Cat )
5 1 2 4 idfu1st ( 𝐶 ∈ Cat → ( 1st𝐼 ) = ( I ↾ 𝐵 ) )
6 5 f1oeq1d ( 𝐶 ∈ Cat → ( ( 1st𝐼 ) : 𝐵1-1-onto𝐵 ↔ ( I ↾ 𝐵 ) : 𝐵1-1-onto𝐵 ) )
7 3 6 mpbiri ( 𝐶 ∈ Cat → ( 1st𝐼 ) : 𝐵1-1-onto𝐵 )