Description: The identity functor/inclusion functor is bijective on objects. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfu1stf1o.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| idfu1stf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| Assertion | idfu1stf1o | ⊢ ( 𝐶 ∈ Cat → ( 1st ‘ 𝐼 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu1stf1o.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | idfu1stf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | f1oi | ⊢ ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 | |
| 4 | id | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) | |
| 5 | 1 2 4 | idfu1st | ⊢ ( 𝐶 ∈ Cat → ( 1st ‘ 𝐼 ) = ( I ↾ 𝐵 ) ) |
| 6 | 5 | f1oeq1d | ⊢ ( 𝐶 ∈ Cat → ( ( 1st ‘ 𝐼 ) : 𝐵 –1-1-onto→ 𝐵 ↔ ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 ) ) |
| 7 | 3 6 | mpbiri | ⊢ ( 𝐶 ∈ Cat → ( 1st ‘ 𝐼 ) : 𝐵 –1-1-onto→ 𝐵 ) |